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This paper presents a PDE-based, gradient-descent approach (GDA) to the EBK quantization of nearly separable
Hamiltonians in the quasi-integrable regime. The method does this by finding an optimal semiclassical basis
of invariant tori which minimizes the angular dependence of the Hamiltonian. This representation of the
Hamiltonian is termed an intrinsic resonance representation (IRR), and it gives the smallest possible basis
obtainable from classical mechanics. Because our method is PDE-based, we believe it to be significantly
faster than previous IRR algorithms, making it possible to EBK quantize systems of higher degrees of freedom
than previously studied. In this paper we demonstrate our method by reproducing results from a two-degree-
of-freedom system used to demonstrate the previous Carioli, Heller, and Moller (CHM) implementation of
the IRR approach. We then go on to show that our method can be applied to higher dimensional Hamiltonians
than previously studied by using it to EBK quantize a four- and a six-degree-of-freedom system.

1. Introduction of one-dimensional problems. Because for each degree of
. . o ) ) freedom the phase space motion traces out a closed curve
The semiclassical quantization@fdimensional nonseparable topologically equivalent to a circle, the overall motion of the
Hamiltonians is an old and difficult problem. Before the \hole system lies on what is called an invariant torus. The
discovery of the Schrodinger equation, the standard procedurejnyariant tori fill out the entire phase space (or at least the region

was essentially what is known today as the Einst@nliouin— within any kind of dissociation energy of the system). The tori
Keller (EBK) quantization method. In this method, one looks are each characterized by an action vetter (1, ..., Ip), and
for canonical momenté, ..., Ip, which are invariants of the  our system is quantized in the manner described above.

Hamiltonian, known as the action variables, and then sets these |f an integrable system is perturbed, and the perturbation is
invariants equal to2(n; + oi/4), where they; are the Maslov  sufficiently weak, then most of the phase space is still covered
indices. (A system for which such invariants can be found by invariant tori® This is essentially the content of the KAM
everywhere in phase space is said to be integrable.) Thetheorem. Thus, it is still possible to find the semiclassical

HamiltonianH depends exclusively on the D actiohs..., I, energies using the EBK approach. The complication that arises
and so the semiclassical energies of the Hamiltonian areis the presence of resonances or near-resonances which lead to
characterized by good quantum numbers Eay, ..., np) = the formation of resonance zones. Invariant tori still exist inside
H(l4, ..., Ip), with I; = 27h(n + ai/4). Usuallyo; = 2. the resonance zones; however, they are described by a set of
In one-dimension, this procedure is straightforward. There action-angle variables that cannot be analytically continued
is only one action variablg and it is given by outside the zones. Thus there is no longer any kind of global
action-angle description of the Hamiltonian (the angles being
| = ¢ pdq (1) the canonical coordinates). The integrable regions of phase space

are therefore covered by a collection of action-angle variables,

where the contour integral denotes integration over one period eﬁch of which igt.ﬁn'y |°ﬁa"]}’t‘r’]a"d V;’ithi? Ia celrtai? region Ofb
) L JamEV(Q) | phase space. Still, each of the sets of local actions may be
of the motion, angp = v 2M(E-V(g)) is the momentum of quantized, and by doing so it is possible to construct the full

the p"."rt'de' It IS usually not po§S|bIe to Obtalr.': I(E) EBK spectrum. The problem with this approach is that quantum
analytically, and in the case of multiple wells there is more than hanicall iin the diff . f oh X
onel for a givenE. Nevertheless, the implementation of this mechanically, tori In the ditterent regions of phase space, 1.e.,
method is relativel. strai htforwa;rd separated by resonance zones, are still coupled to each other.
. y g R ] (As evidence for this, the Hamiltonian can be evaluated in the
This simple scheme fails in higher dimensions. The problem gk states, and the off-diagonal elements are nonvanishing.)
is that for a general nonseparable Hamiltonian, the classical The energy flow between such tori is known as dynamical
motion may very well be chaotic. No invariants other than the tynneling, and it leads to the breaking of degeneracies or near-
energy can be found, and so the energies cannot be characterizegegeneracies in the EBK energies. The above method of
by good actions. On the other hand, if the Hamiltonian is quantizing the local sets of actions fails to take this into account.
separable, then the problem can be broken down into a series  An alternative approach is to remain in a global action-angle
basis and to transform to a set of action-angle variables which
T Part of the special issue “William H. Miller Festschrift”. minimizes the angle dependence of the Hamiltonian. Such a
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representation is termed an intrinsic resonance representatiormethod can be used to study higher dimensional systems than
(IRR), a term coined by Carioli et &The angular dependence previously studied, by looking at four and six dimensional
of a Hamiltonian is minimized when the angular terms are all examples.

resonant terms of the zeroth-order Hamiltonian. It is impossible

to reduce the angular dependence further, because the resona@ The CGM Method

terms lead to the formation of resonance zones, which prevent 1. oM method is an iterative algorithm that finds the

a global action-angle description of the Hamiltonian. invariant tori of some HamiltoniaH(J,6). It does this by finding

We then use the IRR tori as a semiclassical basis with which g generating functio&(l ), transforming from the action-angles
to represent our Hamiltonian in matrix form. Because much of (3,6 to (1,4), so thatH(J,0) = H(l), where i denotes the

the classical dynamiCS has already been absorbed into the |RR’epresentati0n of in the new action_ang|e coordinates.

tori, leaving only the quantum transport across resonance zones, \We start with some integrablB-dimensional Hamiltonian

itis possible to obtain the semiclassical energies using a muchy(J), to which we add a small perturbatiafJ,0), where we
smaller basis than required with a zeroth-order action-angle can expand/ in a Fourier series via

representation. Furthermore, physical insight is obtained, because
the resulting basis is derived from the underlying dynamics of V(@3,0) = Eovk(J)eZﬂik'f’ 2)
the system, whereas the original basis (e.g., harmonic oscillators) K=
is often chosen for computational convenience. ' . .

Carioli, Heller, and Moller (CHM) published an algorithm  Wherek = (ky,... ko), is a vector of integer$We do not include
in 1997 to construct the IRR basis from a given Hamiltorfian. the zero vector, since this can be absorbed HgoBecause
Their method was a generalization of the Chapman, Garrett, OUr perturbation is small, we writg(l,0) as §1,0) = 1-0 +
and Miller (CGMY method for finding invariant tori of a nearly ~ G(1,6), where G(1,0) = F o Gi(1)e*"*?. The new and old
separable system. One drawback with the CHM method is that @ction-angle variables are related to each other via
it requires a priori knowledge of which terms in the Hamiltonian I=1+v,60.0) 3)
are to be considered resonances, and which terms are not. The o=\
CHM method transforms away the nonresonant terms using an
iterative scheme that updates the full Hamiltonian at every
iteration step. Convergence requires only a few iterations, and
the final Hamiltonian contains only the resonant terms. However,
often the terms are not exactly resonant, but nearly resonant. In
principle, near-resonances are to be treated like resonances. ~ o~ r 2in-0
Unfortunately, this is a perturbation-dependent term, and thus H(1.0) = sz(I)e ®)
there is a certain ambiguity in the transition from regarding a "
term as nonresonant to resonant. where

Another drawback with the CHM method is that at each step,
it is necessary to evaluate a multidimensional integral and to A, =A{GJI(H = f H(l + V,G(1,0),0) 2™’ (6)
invert a nonlinear angle map. These features slow the algorithm
down, making it difficult to study systems with more than two  where eact¥; is integrated from 0 to 1. The goal of the CGM

=0+ V,G(,0) (4)

Therefore,H(J,6) = H(I + V,G(1,6),6) = H(l,6). We can
expandH in a Fourier series i, writing

or three degrees of freedom. method is to then choose o@(l) so that
In this paper we present an alternative approach to finding -
the IRR basis. This method is essentially a gradient-descent H{GI()=0 n=0 (7)

approach (GDA) and does not require any a priori assignment
of potential terms as resonant or nonresonant. At each iterationThis is done using a NewterRaphson iteration scheme, at the
step every term in the Hamiltonian is adjusted depending on end of which we haved(J,6) = Ho(l), assuming we obtain
how close it is to being resonant. Convergence typically requires cOnvergence.
2 to 3 iteration steps (at least on the systems studied in this The beauty of this method is that the actidnef the final
paper). The method, as implemented in this paper, is nearly astorus are fixed at the start of the algorithm by the user. By setting
accurate as the CHM algorithm in obtaining the semiclassical | = 2 7h(n + 1/2), we readily obtain the EBK spectrum of the
energies. Its main advantage is that it avoids evaluating Hamiltonian.
multidimensional integrals or inverting nonlinear angle maps.
Thus, we believe that it is much faster than the CHM method, 3- The CHM Method
making it possible to find IRR tori in higher degrees of freedom The CGM method fails when there are resonances in the
than previously studied. Hamiltonian. Because of the formation of resonance zones in
The paper is organized as follows: In section 2, we give a the phase space, the CGM representation of the Hamiltonian is
brief review of the CGM method for finding the invariant tori  a local one, and thus cannot handle quantum effects such as
of a nonresonant system. In section 3, we describe the CHM dynamical tunneling. The CHM method, on the other hand,
generalization of the CGM method, which allows one to find remains in a global action-angle basis even in the presence of
the IRR tori of a Hamiltonian. In section 4, we present the resonances. It does this by reducing the angular dependence of
gradient-descent method and show that it reduces to first-orderthe Hamiltonian as much as possible, but not completely, leaving
perturbation theory in the weakly perturbed limit. In section 5, only those angular terms corresponding to resonances and active
we describe the numerical implementation of our method. fast terms.
Finally, in section 6 we present our numerical results. We first ~ We illustrate the method in the simplest case, that of a single
begin by demonstrating our method using the same two- resonance. (If »(J) denotes the zeroth-order frequencies of
dimensional Hamiltonian which Carioli et al. used to demon- the Hamiltonian, then a resonanceat zeroth-order actiod
strate the CHM method.We then go on to show that our means that(J)-r = 0. A two-dimensional example is ifi-
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(J1,d2) = 2v2(J1,J2), thenr = (1,—2) is a resonance afy(J,).) The second disadvantage to the CHM method is that at each
The trick is to break the Hamiltonian into two pieces. The first iteration step it is necessary to invert the angle map and then to
piece consists of all the nonresonant terms, and may beevaluate a multidimensional integral in order to obtain the
expressed as updated Fourier components of the Hamiltonian. This feature
slows the CHM method down, making it difficult to apply to
systems with more than two or three degrees of freedom.

The way around all these drawbacks is to continuously deform
the original action-angle system via a series of infinitesimal
The second piece consists of the resonant terms and may beenerating functions. Each Fourier component of the Hamilto-
expressed as nian is continuously evolved from some initial value to some
final value. The more nonresonant a term, the closer it is brought
to zero (where a “resonance” can also mean a fast term that
has become active due to the size of the perturbation).
Furthermore, by avoiding the need to invert nonlinear functions
and to evaluate multidimensional integrals, we can get to the
IRR basis much faster than with the CHM method, making it
possible to study systems having higher degrees of freedom (up
to D = 6 in this paper, and possibly higher).

4.2. The Evolution Equation.To derive the PDE governing
the evolution of the Fourier components of H, we assume that
at some time in our evolution we have arrived at some action-
angle systeml(¢;). To propagate to time¢ + dt, we use a
- A ) enerating functiomge ¢t + dtG(l 1+at,¢t). FOr ease of notation
0 + v,G0(1,0) is inverted using a procedure developed by \?ve shall get] =1, | =¢|t+dt’ 9(= 4)::2 = ¢rrar Since d is
Warnock and RutR.The program is stopped when the non- infinitesimally small, we need only worry about first-order terms.
resonant Fourier components are smaller than some specmed]—hus,
error. The resultant Hamiltonian may then be written as

AL = Hy €™
p

Hnr(‘]'e) = Z Hn(J)eZ”tin-«‘)
n=pr,p=0

8

H,(J,0) = EOHpr(J)eZ"'”“’ ©)

p=

In the CHM method, we apply a modified CGM methodHg
as follows: The Fourier components Hfin the new action-
angle variables are given by

A1) = FILGHI) = [ HA + V,60,0)60 ¢)e 2™ dg
(10)

We use the NewtonRaphson method to solué,[{G}](1) =
0,n = pr, p= 0. At each step of the iteration, the maf) =

J=1+dtv,G(l ) (13)
(11)

0=¢— dtv,G(l,9) (14)

We then use the resulting tori as a semiclassical basis with WhiChTherefore,
to construct our matrix representation of the Hamiltonian. If

we let|nOdenote a basis state corresponding to the torus with H(t+dt)(| @) = H(‘)(J,G)
actionsl, = 27h(n + 1/2), then the semiclassical coupling
(n|H|nCis given by

R I+ 1,
Hmn= Hm—n( 2 )

whereHm—n denotes then—n Fourier component ofi.6 This
expression neglects contributions from the classically forbidden
region; however, if we are working in a regime in which a H(l¢)
semiclassical analysis gives accurate results, then we expect sucg—' = ViH(1,9)-V,G(1.¢) — V,H(1.6)-V,G(1.$)
contributions to be small (because the EBK wave functions ot
decay rapidly outside the classically allowed region).

In the more general case of multiple resonances, these terms
must be included intdd, in order to achieve convergence. It
may also be necessary to include near-resonances or even fast

= HO( + dtv,G(1.¢), ¢ — dtV,G(1,¢))
= HY%,¢) + dt(V,HOV,G(1,¢) —
V,HO-AG(1,9)) (15)

12)

and so, we obtain,

= Zni(ZV.HKI)eh”'q’- zbkek(l )eHet —
K=

terms (in the case of chaotic dynamics).

4. The Gradient-Descent Approach

4.1. Problems with the CHM Method. There are two main
drawbacks to the CHM method: First, the trick of removing

IV H.(e21%. S v G (1) ek +
Z sHi(h)e I(ZO Gl(1)e™™)

= Zﬂizlgo[(k°lel(l))Gk(l) -

(RACY() LN )]ez-[i(Hk)'d)

resonant terms from the Hamiltonian runs into trouble in the
case of near-resonances. For a stronger perturbation, near-
resonances and sometimes even fast terms need to be removed
in order for the NewtorrRaphson method to converge. How-
ever, these excluded terms should still be reduced as much as . o
possible, though not necessarily completely. Because the CHMB‘nd s0, our system of nonlinear PDEs is given by
method fails to do this, it is not clear that it will always give oH,
tge opt|mal Hamiltonian with a minimized angular dependence. __— _ o ZO[(k‘Van—k)Gk —((n—K)*V,G)H, ) (17)
nly in cases where there are few exact or near-resonances, jt &
with the other terms highly nonresonant, will the minimized
angular dependence be obtained.

=27y 3 [(k-ViH, ()G —
n K=

((n = K)*V,G(1)H, (1)1e"™ (16)

This is the basic evolution which we are seeking. Note that the
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dynamics occurs at constahtand so, as with the CGM and
CHM methods| is a fixed parameter set at the beginning of
the program, making this method suitable for EBK quantization.
Before discussing how we choose §@i}, we will firstimpose
some constraints on the infinitesimal generating functions.
The first constraint that we impose comes from the fact that
our Hamiltonian must remain real during the evolution. There-
fore, we must havel = H. ButH = Y ,H.e”"¢ = ¥ \H_,e 29,
and soH = 3 ,H.e 27"¢, from which we deduce that,
H_n. To maintain this property, we must ha®l, /ot = oH_/
ot. Now,

oH,

—2ni ZO[(k°VI|:|n—k)ék —((n— k)'vlék)ﬂn—k]
k=

= 2ni ZO[(_k'VIHk—n)ék — ((k = n)*V,GH, _,]
K=

= 2 Z[(k'VIanfk)éfk = ((=n = K)'V,G_YH_ ]
K=

(18)
We also have
e S (WL, )G k)-V,G)H
” IKZO[( HonG — (Fn = k) V,Gy) —n(—]lfl)

Tannenbaum and Heller

gradient descent prescription for minimizirh{f is to takeGy
= 4a(k-ViHg)Hk. Note thatGy is real and satisfie&_x = —Gy.

For stronger perturbations, this choice for {Bg does not
coincide with the gradient descent values. However, one would
expect that for perturbations that are not too strong (which is a
reasonable assumption, since we want to remain in the quasi-
integrable regime of phase space), the above choiGg stfiould
decrease théi;. At the beginning of the evolution there will
be a discrepancy between our choice @y and the actual
gradient-descent values. If oGk start decreasing the? from
the beginning, then our perturbative terms should gradually get
smaller, so that our choice for ti@& should get better and better
as the evolution proceeds. In summary, then, we take

G, = 4n(k-V,Hy)H, (22)
Notice that this choice foBy eliminates the need to determine
what terms in the Hamiltonian are to be considered resonances
or not. The closer an integer vectocorresponds to a resonance,
the smaller the correspondirigy, and so the less that term in
the Hamiltonian is affected by the evolution. Thus, this evolution
scheme evolves the Fourier components of the Hamiltonian in
such a way that the nonresonant behavior is incorporated into
an integrable Hamiltonian, leaving only the resonant terms to
couple the resulting IRR basis.

It should also be noted that this choice f&g leads to first-
order perturbation theory in the limit of small perturbations.

and so we see that to have equality between the two expressiong his is shown in Appendix B.

we must takéS, = G_y, i.e., our generating functions must also
be real.

The next constraint that we impose comes from the fact that

5. Numerical Implementation of the PDE
5.1. Overall Structure of the Algorithm. We begin by

we shall assume time-reversal invariance in this paper. Our toruschoosing our basis of quantum number vec{ors}. With this

guantization program will be used for problems related to the
vibrational dynamics of polyatomic molecules. No magnetic

field is present, and so time-reversal invariance holds for the We thus construct a ligt of the actionsl -+

basis we generate our Hamiltonian matrix via the semiclassical
prescriptionin|H|nO= Hy—n(Im+14/2), as described in eq 12.
o/2 involved in

Hamiltonians of these systems. Thus, our Fourier components,;r semiclassical matrix. It is on this discrete set of actions that

H, may be taken to be real, and we would like this property to
hold throughout the evolution. Therefore, we walt,/dt =
oHy/ot = 9H_y/ot. Using the fact thaH-, = H, = H,, gives us
that

aH_,
S Z)[(k-leMk)Gk + (N +K)V,GIH 1] =
at K=

2mi ZO[(k'V|Hn-k)(—G_k) — (N = K)Vi(=G_)H,l
K=
(20)

and so we must havwgx = —G-«. Combined with the fact that
Gk = G_, we obtainGy = —Gx = G_«. Thus,Gx must be purely
imaginary, and so we can Wril@k = ic}k, where Gy is real.
Since—Gy = G_, we must havé&_ = —Gy. Putting everything
together, our system of PDEs becomes

oH,, A .
- = _ano[(k'VIHn—k)Gk = ((n = Kk)V,GYH,_,] (21)

ot K=
where theG, are real ands_, = —Gy. For simplicity of notation,
we shall henceforth drop the hats from Bgterms.

4.3. Choosing theGy. We wish to choose ouBg in such a
way as to decreasg,|, or equivalently,HnI:In = Hﬁ. In the
limit of a weak perturbation, al,, m = 0 are small compared
to Ho, and sodH /ot ~ —2m(n-V,Ho)Gp. Therefore,aHﬁ/at ~
—4nHp(n-ViHp)Gy, hence in the weakly perturbed limit the

we will apply our gradient-descent algorithm. At the end of the
program, theH,(I,) will have been changed to their final values.
For eachl, we also store all the associatsd&= m — n. The
final values ofHg(l,) are then placed into their appropriate
positions in the semiclassical matrix, thereby giving us our final
Hamiltonian matrix, which we then diagonalize to determine
the semiclassical spectrum.

5.2. Dynamics at a Given Action.We now turn to the
dynamics at a given action vector, which we denotédgiNote
thatGk = 4\7t(k'V|H())Hk = V|Gk = 4\7t(k'V|HQ)V|Hk + 4Jt(k'
DV/Ho)Hk. Now, the systems we study are harmonic-oscillator
Hamiltonians which are perturbed by some anharmonic terms
(as mentioned before, the target systems of this algorithm are
model vibrational Hamiltonians of polyatomic molecules). For
a purely harmonic syster®V,Ho = 0, such a small perturbation
gives us that K-DV|Hp)Hk is at most second-order in the
perturbation strength. Thus, the dominant ternVi®y is 4r-
(k-ViHo)V|Hk. Using this value in our evolution equation
suggests we solve the PDE as follows:

oH,

=873 (Vi H, -
at K=

((n = k)-ViHYH, (k- V,Hg) (23)
Although this PDE is not the exact one we wish to solve, we

expect that for small perturbations it should be sufficiently
accurate. As we shall see with the model systems studied in
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Figure 1. Diagram of an action grid witld = 2 and GDSZ= 2. Figure 2. Collapsing boundary upon successive iterations of our PDE.
this paper, this approximate PDE is sufficiently accurate to give 10 ' T "
us the semiclassical spectrum. sl i
We solve this system of PDEs on a grid of actions about the
central actionlo where our grid consists of all actiohg= Io 6 1
+ DXk, with k = (ky,... kp) satisfying|ki| + ... + |kp| < GDSZ. .l
Let us denote this set of grid points 841y, GDSZ). GDSZ 1
and DX are user-input parameters. A sample grid \litk 2 2| _
and GDSZ= 2 is presented in Figure 1.
At the beginning of evolution, we first compute all of thig > oF 7
on all the grid points about the actidp We cannot compute oL |
Hg for all vectorsk, so we make a user-input cutoff MAXK.
Thus, we only track thos& for which |ki| + ... + |kp| = 4t .
MAXK. All other Hy are set to O throughout the evolution.
Furthermore, to eliminate tracking negligible fast terms we or ‘
introduce a resonance half-width, RHW, and further restrict sl |
ourselves to thosk for which |k-w| < RHW, wherew is the
vector of the zeroth-order harmonic frequencies. 0 - " . . o
The initial Hy are computed analytically. We start with an N
initial, zeroth-order action-angle basis of harmonic oscillators. rigyre 3. Contour plot of the PullenEdmonds potential 1/2§ +
Our Hamiltonian is y?) + 0.05&7 for E = 5, 10, ..., 50.
2 1 . . , .
H(x,p) = P + _(wz 2+ .+ 02 x2) + Note that after the second iteration we continue propagating
' o 17t b~ only onQ(l5,GDSZ— 2). Continuing this process, we get that
M 1 after theith iteration we continue propagating only &(lo,-
h; Z X XD (24) GDSZ - i), and so the total number of iterations cannot exceed
=3 . Srp=n Nt T GDSZ. This scheme avoids the need for imposing artificial

boundary conditions on our system. Rather, around éaale
We take all our masses to be 1, because in a polyatomichave a collapsing boundary, inside of which thig's are
molecule, a normal-mode analysis involves a transformation to propagated correctly at each time step (see Figure 2). Further
a system of mass-scaled coordinates in which all of the massesnore, because we care only about the values ofHhat I,
become 1. The transformation to harmonic-oscillator action- we may as well set the number of iterations and GDSZ to be
angle coordinates is then accomplished via equal. For a desired number of iterations, this gives the minimum
value of GDSZ possible, which increases the algorithm’s speed
and minimizes memory requirements.

I

X = A [ —— CcOsS 216, (25)
s 6. Numerical Examples
wly 6.1. Two Degrees of FreedomWe first demonstrate our
P=—A sin 276, (26) method using the PullerEdmonds Hamiltoniah
2 2
Once theHy have been determined, we compute all gradients Pt 1 2
using centered differences, giving us &(DX?) accurate H= 2 + 2(“’><X2 + w)z/yz) + ey’ (27)

estimate. We then propagate forward by one time step of length

DT, which is also user-specified. (This propagation step is where we setvy = wy = 1 ande = 0.05. This is the system
described in Appendix A.1.) Note that we cannot evaluaté studied by Carioli et al.in illustrating the CHM method, which

at the boundary of our grid. Thus, we cannot change the valuesis why we shall also use it to illustrate our method, so that there
at the boundary points. However, all grid point<d(l o, GDSZ is a frame of reference for comparison.

— 1) have been propagated correctly, and so after the first In Figure 3 we give a contour plot of this Hamiltonian at
iteration step we continue propagation only at those grid points. energie€ = 5, 10, ... 50. This system has four symmetry axes,
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TABLE 1. Two-Degree-of-Freedom Examplé gradient descent method to our zeroth-order 9-fold degenerate

state oM sc 0 iterations 2 iterations bhasig_ (with the same prct)gralr:n para4methers at:s befolr_e)_. N;)tg tl_1|_at
the discrepancy present in Figure 4a has been eliminated. To

g; g:ig‘;g g:ig?i ggi% g:iggg be sure, the match_ is not exact, but the differences cannot be
39 9.3806 9.3747 9.4199 9.3747 seen at the resolution level of the plot.
40 9.4265 9.4219 9.5045 9.4224 6.2. Four Degrees of FreedomTo demonstrate the speed
41 9.5166 9.5150 9.5904 9.5133 of our method, we used it to determine the EBK spectrum of
42 9.6859 9.6876 9.8438 9.6861 the four-dimensional Hamiltonian,
43 9.6987 9.6988 9.8519 9.6983
44 10.0129  10.0163 10.2736 10.0163 2y 2L
45 10.0133 10.0169 10.2740 10.0167 H = Py TPy TP, IOW+ 1()(2 P2 W)+
a Energies of states 37 to 45 obtained by various methods. Column 2 2

2: Exact quantum-mechanical. Column 3: Exact semiclassical. Column 0.05(0.9%%* + 0.98¢Z + 0.99W* + 1.047 +

4: 9 x 9 block diagonalization in the harmonic oscillator torus basis.

Column 5: 9x 9 block diagonalization in the IRR basis. 1-0W + 1-0322W2) (28)

We looked at those quantum states, (, N3, Ny) satisfyingn;
giving rise to four modes of oscillation: Two “local” modes, -+ n, + nz + ny; = 8. This gave us 165-fold degenerate states
corresponding to oscillation along theandy axes, and two  with a zeroth-order energy & = 10. Counting up from the
“normal” modes, corresponding to oscillation along the liges  ground-state gives us that these are states 331 to 495 of our
= £x. There is strong dynamical tunneling between the “local” system.
modes in the quasi-integrable regime that leads to a quantum- The quantum and exact semiclassical energies of these states
mechanical breaking of the degeneracy in the spectrum. were obtained by diagonalizing all states up to a total of sixteen

Following Carioli et al. we looked at those quantum states quanta. The results are listed in the second and third columns,
(n1,ny) satisfyingn, + n, = 8. This gives us 9-fold degenerate respectively, of Table 2. Note that we do not list all 165 energies,
states with zeroth-order enerdy = 9. The system is in the  but rather only a representative sample. As with the two-
quasi-integrable regime at this energy. If we count up from the dimensional case, we also diagonalized the ¥6%65 block
ground-state (0, 0), then we find that these nine states are statesf our degenerate states, using the zeroth-order harmonic
37 to 45 of our system. oscillator tori as our semiclassical basis. This gives us the

Upon introducing the anharmonic coupling term to our energies in the fourth column of Table 2. Finally, we applied
system, the degeneracy of these states is broken, giving theour algorithm to this basis using the parame@fs= 0.0007,
quantum-mechanical energies listed in the second column of DX = 0.1, MAXK = 8, RHW = 4.1, and iterating twice. The
Table 1. These energies were obtained by diagonalizing all statesesults are listed in the fifth column of Table 2.
from the ground state up to a total of sixteen quanta. Using the = The average initial discrepancy between our IRR energies,
semiclassical coupling prescription given in eq 12, we also found given in the fourth column, and the exact semiclassical energies
the corresponding semiclassical energies using the harmonic-was 3.0%. The final discrepancy was 0.2%. Thus, our algorithm,
oscillator tori as our basis. As with the quantum energies, thesein two iterations, reduced the initial error in the energies by an
energies were also determined by diagonalizing all states up toaverage of 93.3% and by at least 80% for all our energies. There
a total of sixteen quanta. The energies obtained were the samere four “anomalous” energies near the top of the band with
energies obtained by Carioli et al. using the IRR approach. Thesesignificantly greater error than the other energies, but even for
energies are in the third column of Table 1. these energies the final error is around 1%. At this point it should

We next diagonalized only the @ 9 block of our 9-fold be noted that our perturbation might be a little large for our
degenerate states using the harmonic-oscillator tori as ourPDE (which neglected th®V,Hp term), because the initial
semiclassical basis. The results are listed in the fourth columnenergy gap that needed to be closed was on average several
of Table 1. Note the significant discrepancy between these times larger than the initial energy gap in our two-dimensional
energies and the exact semiclassical energies. (By exactexample.
semiclassical energies we mean the energies obtained using the 6.3. Six Degrees of Freedome conclude this section by
same harmonic basis used to obtain the quantum energies, bulooking at a six-degree-of-freedom example. As with the four-
using the semiclassical couplings instead of the quantum dimensional example, the Hamiltonian we chose was a gener-
couplings.) We applied our GDA method to these nine degener- alization of the PullerEdmonds system. We took
ate states, usinBT = 0.0007,DX = 0.1, MAXK = 8, RHW
= 8.1, and iterating twice. The results are listed in the fifth 158 s s o s 5
column of Table 1. Note that the discrepancy with the exact H = - Z(Xk + P +0.05(0.93 x; + 0.94¢ X3 +
semiclassical energies has been drastically reduced, by at least 21E
90% in all cases, and by over 99% in most. Thus, while our 0.95¢ X5 + 0.96¢ X + 0.97G X + 0.98G %G +
method is not quite as accurate as the CHM method, it is nearly 2 2 2.2 2
so. Furthermore, the disrepancy between the two methods is 0.99¢ Xé +1.00¢ xé 10066+ 1'02<‘2‘ Xt
well within the discrepancy between the exact semiclassical and 1.03¢ Xé + 1.04G 5 + 1.056 X5 + 1.06¢ Xz + 1.0%¢ X3)
exact quantum energies. (29)

Carioli et al. also performed a sweepwffrom 0.99 to 1.01
to look at the avoided crossing between states 39 and 40. InWe initially tried to obtain the exact quantum and semiclassical
Figure 4(a) we show the semiclassical energy curves for the energies of the states with a total of 8 quanta in the unperturbed
two states, along with the curves obtained by diagonalizing the limit. While applying our method to this basis would not have
9 x 9 block using the harmonic-oscillator tori as our basis. In been a problem, we would not have been able to generate the
Figure 4b we also show the semiclassical energy curves for theexact quantum and semiclassical energies required for com-
two states, along with the curves obtained by applying our parison. As with the two- and four-dimensional cases, we would
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Figure 4. (a) Semiclassical avoided crossing between states 39 and 40 as a funatipriTbe curves here are the exact semiclassical energies
and the energies obtained by diagonalizing the 9 block in the harmonic oscillator torus basis. (b) Semiclassical avoided crossing between states
39 and 40 as a function @f,. The curves here are the exact semiclassical energies and the energies obtained by diagonalizing thec in

the IRR torus basis. The IRR basis was generated using the gradient-descent algorithm.

TABLE 2: Four-Degree-of-Freedom Examplé

state as before, we get that these are states 85 to 210 of our

state oM sC 0 iterations 2 iterations system.
331 10.4846 10.4658 10,5753 10.4821 The quantum and_ exact semiclassical energiee were then
332 10.4877 10.4688 10.5812 10.4853 obtained by diagonalizing all states up to a total of eight quanta.
333 10.4902 10.4712 10.5846 10.4877 The results are listed in the second and third columns,
334 10.4972 10.4777 10.5936 10.4942 respectively, of Table 3. We do not list all 126 energies, but
335 10.7116 10.6961 10.8517 10.7137 rather only a representative sample. Proceeding as before, we
336 10.7147 10.6992 10.8557 10.7167 . .
337 10.7179 107023 10.8598 107198 then diagonalized only the 126 ;26 bleck of degenerate stetes,
338 10.7238 10.7081 10.8675 10.7256 using the zeroth-order harmonic oscillator tori as our basis. The
339 10.7271 10.7114 10.8717 10.7288 results are given in the fourth column of Table 3. Finally, we
340 10.7304 10.7146 10.8759 10.7320 applied our gradient-descent algorithm to this degenerate basis.
341 s 10.7268 10.9048 10.7455 Using MAXK = 8 gave us so many resonances and fast terms
342 10.7460 10.7302 10.9095 10.7488 h h . hibitivel | S ificed
343 10.7493 10.7334 10.9142 10.7520 that the run-time was prohibitively slow. So, we sacrifice
344 10.7564 10.7403 10.9238 10.7587 accuracy for speed and used the paraméddrs= 0.0007,DX
345 10.7596 10.7435 10.9283 10.7618 =0.1, MAXK =4, RHW= 4.1, and iterated twice. The results
gﬁ? 18-5233 18-;‘1182 18-3322 ig-gg‘;g are given in the fifth column of Table 3. Notice that although
348 10.8355 10.8231 10.9980 10.8407 we significantly reduceq the number of avallablle.r_esonances
349 10.8530 10.8418 11.0288 10.8591 and fast terms, we still managed to cut the initial energy
350 10.8564 10.8450 11.0323 10.8623 discrepancy from an average of 2.3% to an average of 0.4%.
480 11.5308 11.5132 12.0430 11.5416 This corresponds to an average reduction in the initial error by
32% ﬂgggg ﬂg%gg 3-8‘5122 ﬂ-gi‘;‘ll 83.3%, with a minimum reduction of 78.7% and a maximum

. . . . H 0
483 115350  11.5314 12.0580 115503  reduction of 90.4%. _ _ _
484 11.5369 11.5321 12.0623 11.5527 6.4. DiscussionNotice that in all our examples, just using
485 11.5376 11.5345 12.0633 11.5527 the degenerate basis of harmonic-oscillator tori did not give us
486 11.5401 11.5375 12.0660 11.5548 a good estimate of the semiclassical energies. It was necessary
487 11.5402 11.5409 12.0718 11.5576 to diagonalize all states within a much wider energy band to
488 11.5427 11.5435 12.2613 11.6688 . . .
489 11.5450 11.5449 12.2805 11.6791 do so. Although harmonic oscillators are probably the easiest
490 11.5455 11.5458 12.2819 11.6798 basis states to use for the potentials of interest to us in this
491 11.5456 11.5503 12.2834 11.6806 paper, it is generally a mistake to attach a mechanism to the
jgg ﬁ-gggg ﬁ-gggg g-gggg ﬁ-gg%g energy flow associated with this basis. Stuchebrukhov and
494 116699 116801 122878 116830 Ma_rfus, using a _hermon_lc oscillator ba_3|s to study (H_D)ll
495 11.6707 11.6810 12.3028 11.6911 cm™! energy splittings in a polyatomic molecule with 42

vibrational degrees of freedom, had to diagonalize all states

a A sample of energies of states 331 to 495 obtained by various
methods. Column 2: Exact quantum-mechanical. Column 3: Exact
semiclassical. Column 4: 16% 165 block diagonalization in the
harmonic oscillator torus basis. Column 5: 185165 block diago-
nalization in the IRR basis.

within an energy band of 10 cmh or more. They invoked the
concept of a “superexchange” mechanism, whereby energy flow
between nearly degenerate states, but distantly separated in the
guantum number space, occurred via energy flow between states
closer to each other in the quantum number space but with a
have had to diagonalize all states up to a total of sixteen quantalarger energy gap between them. This “superexchange” mech-
to get the higher-order accuracy desired. The resulting basisanism is a basis-dependent notion, however, as is most simply
was simply too large for our computer to handle, and so we illustrated by our two-degree-of-freedom example. To obtain
had to retreat to a more manageable example. We thus lookedhe semiclassical energies of states 37 to 45, with a total energy
at those quantum states; (N, ns, N4, Ns, Ne) satisfyingn; + n, range <1, we had to diagonalize a much larger basis of 153
+ ng + ng + ns + ng = 4, giving us 126 degenerate states with states with a total energy range ®20. We could also invoke

a zeroth-order energy d = 7. Counting from the ground-  a “superexchange” mechanism for this energy flow. Indeed,
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TABLE 3: Six-Degree-of-Freedom Examplé however, semiclassical quantization no longer occurs only on
state oM sc 0 iterations 2 iterations the invariant tori (due to ergodic regions of phase space of area
a5 = 5094 2 4947 2 6006 25181 S|gn|f|cant!y larger than (&h)P), so that the IRR basis is no
86 75245 75108 7.6220 75347 longer optimal. Another way of looking at this is that because
87 7.5272 7.5133 7.6254 7.5374 our matrix is no longer block diagonal (though with a simplified
88 7.5307 7.5167 7.6299 7.5408 coupling structure), we have to invoke the “superexchange”
89 7.5363 7.5220 7.6371 7.5464 mechanism in order to account for the observed energies. At
90 7.5454 7.5305 7.6485 7.5552 this point, we may as well use harmonic oscillators.
91 7.6178 7.6063 7.7413 7.6328 . . . . . .
92 7.6199 7.6083 77440 7.6349 In the end, the use of invariant tori as a semiclassical basis
93 7.6220 7.6104 7.7468 7.6370 for quantum calculations is most useful at relatively low energy,
94 7.6232 7.6116 7.7484 7.6383 where the dynamics is quasi-integrable. It is in this regime that
95 7.6253 7.6137 7.7512 7.6404 the IRR basis is expected to be most physically motivatived,
g? ;-g%g ;-gig; ;;ggg ;-ggg and consequently leads to a significantly smaller basis, as well
98 7.6307  7.6189 7.7582 7.6458 as giving physical insight.
99 7.6328 7.6210 7.7610 7.6479
100 7.6356 7.6237 7.7648 7.6507 7. Conclusions and Future Research
190 7.8028 7.7952 7.9992 7.8256
191 7.8045 7.7959 8.0010 7.8265 In this paper we presented an alternative approach to the CHM
192 7.8052 7.7976 8.0020 7.8272 method for finding the IRR basis of a Hamiltonian system. Our
193 7.8069 7.7979 8.0035 7.8289 approach is essentially a gradient-descent approach that continu-
194 7.8086 7.7993 8.0073 7.8307 ously deforms our initial action-angle basis (taken to be
195 7.8581 7.8608 8.0973 7.8892 . . . . . A .
196 7.8598 7.8625 8.0998 7.8908 harmonic oscillators) into an optimal basis of tori in which the
197 7.8615 7.8642 8.1023 7.8925 angular dependence of the Hamiltonian is minimized. The
198 7.8624 7.8651 8.1036 7.8934 advantage of the gradient-descent approach is that formally it
199 7.8640 7.8667 8.1061 7.8950 does not distinguish between resonances and fast terms, so that
%82 ;-gggz ;-gggi g-iggg ;-28% all potential terms are evolved in a uniform fashion and reduced
202 7:8680 7:8707 8:1121 7:8990 as much as possible. The CHM method, on the other hand,
203 7.8697 7.8724 8.1146 7.9006 requires an a priori decision as to which terms are to be treated
204 7.8719 7.8746 8.1179 7.9028 as resonances and which are going to be incorporated into
205 7.8722 7.8750 8.1186 7.9032 creating the final tori. In the case of near-resonances this
206 7.8739 7.8766 8.1211 7.9049 distinction is blurred and depends on the strength of the
ggg ;:g;?g ;:g;gi g:ggg ;:ggg? perturbation. In the chaotic regime, even fast terms may n_eed
209 7.8811 7.8837 8.1319 7.9120 to be treated as resonances. Although no speed comparisons
210 7.9164 7.9295 8.1999 7.9556 were made, we believe that our method is also faster, since we

a2 A sample of energies of states 85 to 21Q obtained by various _?_?1 not have tohevc;a.luate t?ny Intzgrals Ozjlm;?rththedangle r_’nap.l
methods. Column 2: Exact quantum-mechanical. Column 3: Exact | NUS, our method can be used to study higher dimensiona
semiclassical. Column 4: 12& 126 block diagonalization in the ~ Systems (up t@® = 6 and maybe even higher).
harmonic oscillator torus basis. Column 5: 126126 block diago- Like the CHM method, our method, as currently implemented,
nalization in the IRR basis. assumes a small perturbation on a zeroth-order integrable

Hamiltonian. Convergence is fast, requiring only two iterations

shrinking our basis did give a small change in the energies in the examples studied in this paper. One approach to allow
(though only in the last one or two decimal places), so that one for stronger perturbations is to include the@V;Ho)Hy term
could argue that our perturbation is sufficiently strong to allow arising from our choice of5¢. The problem with this is that
for such a mechanism. However, as is clear by applying our using our collapsing boundary method we would have to
GDA method, a more accurate explanation is that while a decrease GDSZ by 2 at each iteration step. If we wish to apply
superexchange mechanism is required to account for energy flowour method to higher-dimensional systems, this would greatly
in the harmonic basis, there exists a basis obtainable from theincrease computation time, because two iterations would require
underlying classical dynamics of the system, namely the IRR a GDSZ of 4 as opposed to the current requirement of 2. As
tori, in which the superexchange mechanism need not bementioned before, the systems of interest to us are Hamiltonians
invoked. Using the IRR tori we were able to obtain our nine modeling the vibrational energy flow within polyatomic mol-
semiclassical energies using a much smaller basis, which alscecules. Because we wish to remain in the quasi-integrable
lies within the energy range of our semiclassical spectrum. The regime, our Hamiltonians are taken to be harmonic plus some
“superexchange” mechanism is thus an artifact, coming from small anharmonic perturbation. Thus, including the term involv-
the fact that our zeroth-order basis of harmonic-oscillators is ing DV,Hg simply adds run time without any significant gains
not the optimal basis of IRR tori. in accuracy for the types of systems of interest to us.

Carioli et al. made one additional plot in their paper, in which For more general Hamiltonians, a PDE approach may still
they applied their CHM method in the chaotic regime, with ~ be desirable, and yet our choice f@k and our approximate
= 50. To obtain convergence of their method, they had to also PDE given in eq 23 may not be sufficient to obtain the IRR
include the fast terms arising from the vecwr (1,1). The basis. Even if our current choice for tl& is sufficient, we
IRR representation of the Hamiltonian was no longer block may find that a different choice leads to a more stable and
diagonal, though the coupling structure was still simplified accurate implementation of our PDE. In any case, one would
somewhat. For this reason, we decided to forego our own studyhave to retreat to eq 21 or even eq 17 (in the case where time-
at E = 50. At best, our algorithm would simplify the coupling reversal invariance no longer holds) and formulate a different
structure as well, so that a smaller basis would be required to scheme for choosing th&. At this point it should be noted
obtain the semiclassical spectrum. In the chaotic regime, that the PDE approach may be the simplest and fastest overall
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method for finding invariant tori, because it does not require Appendix A. Numerical Details

the _evaluation _of any integrals or the numerical inversion of In this appendix we give some additional numerical details
nonlinear functions. regarding our implementation of the GDA method. The ad-

Our future goal is to determine the structure of the matrices ditional information provided here should make the results
in the IRR basis. The greatest advantage of the IRR representapresented in this paper completely reproducible.

tion is that it incorporates much of the classical mechanics into A.l. Numerica”y Stable Propagation_ In this section we

the invariant tori, thereby making possible the isolation of describe how we numerically integrate our PDE one time step
residual quantum effects such as dynamical tunneling. An forward. First of all, it should be noted that because we are
understanding of the couplings between the IRR tori will reveal considering all terms of the forkr V;Ho, we are simultaneously
how the tunnel couplings behave. This could in turn be used to eyolving potential terms corresponding to resonances and fast
understand phenomena such as localization of the tunneling, orterms. Thus, there is a variety of time scales in our system, so
if the perturbation is sufficiently strong, ergodicity over the that stiffness becomes a problem. One way around this is to
energy hypersurface due to dynamical tunneling. employ an implicit integration scheme to achieve stability, but
It has been mentioned in this paper that in the quasi-integrablewe have a different method that takes advantage of the fact that
regime, the couplings between the IRR tori correspond to our perturbation is small.
dynamical tunneling in the semiclassical limit. Because the  The first-order approximation to our evolution equation was
presence of resonances prevents the elimination of the IRRsShown to bedHy/at = —87%(n-V|Ho)?Hy, giving Hy(l t+7) =
couplings Hm_n, it has been argued in ref 4 that it is the Hn(l,)e 8 ("ViHd* Therefore, for smalt we may write
formation of resonance zones in the phase space that facilitates
the tunneling. In a Poincare surface of section, the phase spac@Hn(l.t + 1)

surrounding a hyperbolic fixed point in the resonance zone looks —————— = —Bﬂzzo[(k'V|Hn—k(| DHLLE) = ((n = k)
much like the phase space for the one-dimensional above-barrier k= ,
reflection problenf;*-*3which is a prime example of dynamical VH(LO)H_ (1,)] x (keV, Ho)efgﬂz((k'v'H°)2+(("7k)'V'H°) i
tunneling. (A1)

Classically, however, in 3 or more dimensions, Arnol'd
diffusion can cause energy transport between the tori. A so integratingr from 0 to DT gives
trajectory can travel along the Arnol'd web in the chaotic
interstices between the tori, and may very well be ergodic over H,(I,t + DT) = H,(I,t) —
the energy hypersurface. Thus, in higher dimensions, a numerical - o BTk ViHg>+ ((n—k)-V|Ho)2)DT)(k.V Ho) x
study to determine whether the IRR couplings are primarily due k; o
to tunneling or to Arnol'd diffusion is necessary. The general |
. e . . , b — —k)- OH (Lt
consensus is that Arnol'd diffusion is slow and localizes (k=¥ H (LR = (0 = k) ViH(LO)Ho- (1,0
quantum-mechanicaly*? A numerical study of this phenom- K-V HO2 + (N — K)-V H)
enon is still warranted before making the claim with certainty (k=ViHo)" + (( )ViHo)
that the IRR tori gre (?oupled by dynarmcal tun.nellng.. OF course, ifo = (k-ViHg)? + ((n — K)-V;Ho)? is too close to
.E.Sefore concluding, it Seems appropriate to briefly _d|scuss the 0, then the computer will give a floating exception error if we
utility of the IRR approach in general, and the PDE implemen- try to evaluate 1— e 870T/q directly. We thus evaluate this
tation of it in particular, as a numerical method for quantum 5. as follows: We definex = 8720DT. and rewrite our
calculations. After all, it is usually easier and faster to use a expression asA&DT 1 — e ¥/x. We then évaluate T+ e ¥x
convenient zeroth-order basis and simply diagonalize a Iargevia its Taylor expansion, given by®_, (—)M(n+1)!
. . . ' n=0 o
basis set. The PDE method is cumbersome by comparison, gy eynanding the exponential out to first-order, we see that

requiring more sophisticated mathematical and numerical y,i5"30nr0ach reduces to the ordinary one-step explicit Euler
machinery. method for sufficiently smalDT. However, the above method
As the dimensionality of a system increases, the basis setis superior to using an explicit Euler method because we can
required for a direct zeroth-order diagonalization could be too now take larger time steps that are more appropriate to the slow
large for the computer to handle. As mentioned in section 6.3, terms arising from resonances or near-resonances. These larger
we already encountered this problem in our numerical tests. Thetime steps do not lead to numerical instability, since the more
IRR approach can significantly reduce the size of the basis nonresonant terms (corresponding to the shorter time scales
required to obtain the desired energies, to a point where this requiring smaller time steps to maintain stability in the explicit
basis can easily be stored and diagonalized on the computerEuler scheme) are attenuated by the exponential factor. In fact,
Thus, while it is slower than direct diagonalization, this approach since we want to kill off the nonresonant terms in any case,
may be useful as a numerical method in cases where the requiredhere is an optimum time step which kills off the nonresonant
zeroth-order basis set size is simply too large for the computer terms as much as possible without sacrificing accuracy.
to handle. The IRR approach has the additional advantage that It turns out that our propagation scheme is still not as stable
the reduced basis is more physically motivated than the zeroth-as desired. This is remedied by propagating using the Lax
order basis, because the IRR basis is extracted from themethod® Let (&y,...&p) denote the standard orthonormal basis
underlying classical dynamics of the system. of RP. At somely on our action grid, Iet'ki denotelx = DX&.
Then in eq A2 we replaceln(lxt) with 32 Hn(li"t) + He-
Acknowledgment. This research has been supported by NSF (1, ,t)/2D. This trick adds a diffusive term to our propagation,
Grant CHE 0073544, and by an NSF Graduate Researchwhich attenuates high-frequency components and therefore
Fellowship. The authors are deeply grateful to Bill Miller for  stabilizes our system DT andDX are in an appropriate ratio.
leading the way into the semiclassical domain. Bill's work and An explicit stability analysis was not performed on this system,
friendship have shaped E.J.H.’s scientific career. so we do not know what the exact stability criterion is. We
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simply found that employing a Lax method allowed us to choose Appendix B. The First-Order Limit

T 11 appendi. e shal show hat ourchic e
9 9 9 P " to first-order perturbation theory in the limit of small perturba-

It should be noted that in our actual code all of the actions tjons, To do so, we first need to determine how to string together
were measured in units ofi2meaning we set = A(n; + 1/2), the infinitesimal, short-time generating functions to form the
as opposed to the conventlon_tlhat: h(n + 1/2) = Znh(ni}r ~ final generating function.

1/2). In creating our torus basis we stored the torus actions via  consider then the following sets of action-angle variables:
their quantum numbers. Instead of multiplying by ® get a (lo,do), (11,61), (12:¢2), at timest, t + dt, t + 2ct, respectively.

value consistent with the definition in eq 1, we simply left the These action-angle variables are connected by generating
actions in these “quantum number” units. We stillimplemented fynctionsSy(11,¢), Sl 2:¢ba) with

our PDE as written (i.e., with all the coefficients given in this

paper). This implementation essentially amounts to a dilation Si(lpg) = 112¢g + dtG(11,00) (B1)
of DT by 472 Thus, someone who wishes to reproduce the
results presented below with an implementation of eq 23 using S(l,p) = 1,20, + dtG,(1,,0,) (B2)
the definition of the actions given by eq 1 should increase all
our DT’s by a factor of 4?2 Therefore,

A.2. Numerical Issues.The main remaining problem with
our implementation of the gradient-descentgmpethod is that it o=l + dtv«ﬁoGl(ll’%) (B3)
does not stop once we reach the IRR basis. In our two-
dimensional case, using the parameters given above but iterating $1= o+ dtV, Gy(I1.¢0) (B4)
three times instead of two gives us a deviation from the
semiclassical energies, especially at the higher end of the l,=1,+dtV, Gyl ,.¢,) (B5)
spectrum, where the method significantly underestimates the !
true semiclassical energies. After iterating five or six more times b, =, + dtV|sz(| o) (B6)

we get a floating exception, indicating that perhaps there are
some numerical stability issues that have not been completely

resolved and that lead to significant error already in the third Therefore, working to first-order intdwe have

iteration. Thus, the introduction of some kind of stopping term lo=1,+ dtV, G,(I.,¢,) + dtV, G.(I,,

would be useful. The stopping criterion could be some kind of o 2 g Al20) %0 1(1190)

error term which, if thesy drop below it, the program is stopped =1, + dtV, G(l ) + AtV Gy(1 5,63) (B7)
0 0

(such a criterion was employed in the CHM method to stop the
Newton—Raphson iterations, though “overshooting” of the target and,
was not a problem).

There are several reasons we have not included a stopping b, = o+ dtV, Gy(I1,¢0) + dtV, Gyl 2.6,
term at this point. First of all, as written, our gradient descent
algorithm gives accurate results after only two iteration steps. = ¢ T dtV, Gy(l5:00) + AV, Gy(I5:6) (B8)
Second, for higher dimensional systems, the number of reso-
nances and fast terms increases rapidly. Because the size of th&hus, the generating function frohto t + 2dt is justGs(l 2,¢0)
action grid also increases rapidly in higher dimensional systems,= Gi(l2,¢0) + Ga(l2,¢0). As long as we are working in the
we would in any case never iterate more than 2 or 3 times in weakly perturbed limit, so that first-order perturbation theory
order to maintain a reasonable run time. Finally, a system that applies, we obtain that our overall generating funct@(h,0)
requires several iteration steps to give accurate results is typicallyis given by
more strongly perturbed than a system that requires fewer
iteration steps. Such a more strongly perturbed system is less G(l,¢) = fOT G,(1,0)dt (B9)
likely to be in the quasi-integrable regime of phase space,
making a torus-quantization scheme less physically motivated \yhereG; is the infinitesimal generating function frotrto t +
in any case. Given these considerations, a stopping termg,
becomes more of a feature that simply slows the algorithm  Now that we know how to string together the short-time
down. generating functions, we can determine the form for the final

An alternative to a stopping term is to always iterate twice, generating function. In the weakly perturbed limit we showed
but allow the computer to choose the optimum step size basedthat oH,/ot = —27(n-VHg)G, = —872(n-V,Hg)?H,. Note that
on the initial perturbation. While we have not done this yet, we Hg(l) remains constant for all, and so the solution to our

may decide to do so in the future. differential equation is simply
Despite our reasoning, at some point it may become desirable O\ B2V, oy
to allow for more iterations. A more careful analysis of our Ha(1,t) = Hy(l)e ™o (B10)

PDE will be required to determine the cause of the inaccuracy

at higher iterations. If it is due to numerical instability, then a Therefore G(1,t) = 4rHg(k-V|Ho)e 87k ViH)% k = 0. Be-
more sophisticated approach than our current one may becauseGy(l t) starts out at 0, then integrating outdogives us
required to better stabilize our evolution. If it is due to errors for our final generating function thagy(l) = HE/Zn(k-V|Ho),
introduced by solving the approximate PDE given in eq 23, which is exactly the result from first-order perturbation theory,
then we may have to retreat back to the full PDE without any as claimed.

terms neglected. We may have to retreat even further and Of course, the above first-order limit derivation is only valid
formulate an altogether different scheme for choosing @ur if the system is nonresonant. Otherwise, our final generating
in order to improve the stability and accuracy of our algorithm. function blows up, taking us out of the first-order regime, so
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that our method of stringing together our infinitesimal generating
functions is no longer valid. However, first-order perturbation
theory is also only valid if the system is nonresonant, and so

J. Phys. Chem. A, Vol. 105, No. 12, 2002813

(7) Stuchebrukhov,A. A.; Marcus, R. A. Chem. Phys1993 98, 6044.

(8) Edward Ott;Chaos in Dynamical SystemSambridge University
Press: New York, 1993.

(9) Herbert GoldsteinClassical Mechanic2nd ed.; Addison-Wesley,

our gradient descent method does indeed reduce to first-orderReading, MA, 1980.

perturbation theory in the weakly perturbed limit.
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