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This paper presents a PDE-based, gradient-descent approach (GDA) to the EBK quantization of nearly separable
Hamiltonians in the quasi-integrable regime. The method does this by finding an optimal semiclassical basis
of invariant tori which minimizes the angular dependence of the Hamiltonian. This representation of the
Hamiltonian is termed an intrinsic resonance representation (IRR), and it gives the smallest possible basis
obtainable from classical mechanics. Because our method is PDE-based, we believe it to be significantly
faster than previous IRR algorithms, making it possible to EBK quantize systems of higher degrees of freedom
than previously studied. In this paper we demonstrate our method by reproducing results from a two-degree-
of-freedom system used to demonstrate the previous Carioli, Heller, and Moller (CHM) implementation of
the IRR approach. We then go on to show that our method can be applied to higher dimensional Hamiltonians
than previously studied by using it to EBK quantize a four- and a six-degree-of-freedom system.

1. Introduction

The semiclassical quantization ofD-dimensional nonseparable
Hamiltonians is an old and difficult problem. Before the
discovery of the Schrodinger equation, the standard procedure
was essentially what is known today as the Einstein-Brillouin-
Keller (EBK) quantization method. In this method, one looks
for canonical momentaI1, ..., ID, which are invariants of the
Hamiltonian, known as the action variables, and then sets these
invariants equal to 2πp(ni + Ri/4), where theRi are the Maslov
indices. (A system for which such invariants can be found
everywhere in phase space is said to be integrable.) The
HamiltonianH depends exclusively on the D actionsI1, ..., ID,
and so the semiclassical energies of the Hamiltonian are
characterized by good quantum numbers viaE(n1, ..., nD) )
H(I1, ..., ID), with Ii ) 2πp(ni + Ri/4). UsuallyRi ) 2.

In one-dimension, this procedure is straightforward. There
is only one action variableI, and it is given by

where the contour integral denotes integration over one period
of the motion, andp ) (x2m(E-V(q)) is the momentum of
the particle. It is usually not possible to obtainI ) I(E)
analytically, and in the case of multiple wells there is more than
one I for a givenE. Nevertheless, the implementation of this
method is relatively straightforward.

This simple scheme fails in higher dimensions. The problem
is that for a general nonseparable Hamiltonian, the classical
motion may very well be chaotic. No invariants other than the
energy can be found, and so the energies cannot be characterized
by good actions. On the other hand, if the Hamiltonian is
separable, then the problem can be broken down into a series

of one-dimensional problems. Because for each degree of
freedom the phase space motion traces out a closed curve
topologically equivalent to a circle, the overall motion of the
whole system lies on what is called an invariant torus. The
invariant tori fill out the entire phase space (or at least the region
within any kind of dissociation energy of the system). The tori
are each characterized by an action vectorI ) (I1, ..., ID), and
our system is quantized in the manner described above.

If an integrable system is perturbed, and the perturbation is
sufficiently weak, then most of the phase space is still covered
by invariant tori.8 This is essentially the content of the KAM
theorem. Thus, it is still possible to find the semiclassical
energies using the EBK approach. The complication that arises
is the presence of resonances or near-resonances which lead to
the formation of resonance zones. Invariant tori still exist inside
the resonance zones; however, they are described by a set of
action-angle variables that cannot be analytically continued
outside the zones. Thus there is no longer any kind of global
action-angle description of the Hamiltonian (the angles being
the canonical coordinates). The integrable regions of phase space
are therefore covered by a collection of action-angle variables,
each of which is only locally valid within a certain region of
phase space. Still, each of the sets of local actions may be
quantized, and by doing so it is possible to construct the full
EBK spectrum. The problem with this approach is that quantum
mechanically, tori in the different regions of phase space, i.e.,
separated by resonance zones, are still coupled to each other.
(As evidence for this, the Hamiltonian can be evaluated in the
EBK states, and the off-diagonal elements are nonvanishing.)
The energy flow between such tori is known as dynamical
tunneling, and it leads to the breaking of degeneracies or near-
degeneracies in the EBK energies. The above method of
quantizing the local sets of actions fails to take this into account.

An alternative approach is to remain in a global action-angle
basis and to transform to a set of action-angle variables which
minimizes the angle dependence of the Hamiltonian. Such a† Part of the special issue “William H. Miller Festschrift”.
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representation is termed an intrinsic resonance representation
(IRR), a term coined by Carioli et al.1 The angular dependence
of a Hamiltonian is minimized when the angular terms are all
resonant terms of the zeroth-order Hamiltonian. It is impossible
to reduce the angular dependence further, because the resonant
terms lead to the formation of resonance zones, which prevent
a global action-angle description of the Hamiltonian.

We then use the IRR tori as a semiclassical basis with which
to represent our Hamiltonian in matrix form. Because much of
the classical dynamics has already been absorbed into the IRR
tori, leaving only the quantum transport across resonance zones,
it is possible to obtain the semiclassical energies using a much
smaller basis than required with a zeroth-order action-angle
representation. Furthermore, physical insight is obtained, because
the resulting basis is derived from the underlying dynamics of
the system, whereas the original basis (e.g., harmonic oscillators)
is often chosen for computational convenience.

Carioli, Heller, and Moller (CHM) published an algorithm
in 1997 to construct the IRR basis from a given Hamiltonian.1

Their method was a generalization of the Chapman, Garrett,
and Miller (CGM)2 method for finding invariant tori of a nearly
separable system. One drawback with the CHM method is that
it requires a priori knowledge of which terms in the Hamiltonian
are to be considered resonances, and which terms are not. The
CHM method transforms away the nonresonant terms using an
iterative scheme that updates the full Hamiltonian at every
iteration step. Convergence requires only a few iterations, and
the final Hamiltonian contains only the resonant terms. However,
often the terms are not exactly resonant, but nearly resonant. In
principle, near-resonances are to be treated like resonances.
Unfortunately, this is a perturbation-dependent term, and thus
there is a certain ambiguity in the transition from regarding a
term as nonresonant to resonant.

Another drawback with the CHM method is that at each step,
it is necessary to evaluate a multidimensional integral and to
invert a nonlinear angle map. These features slow the algorithm
down, making it difficult to study systems with more than two
or three degrees of freedom.

In this paper we present an alternative approach to finding
the IRR basis. This method is essentially a gradient-descent
approach (GDA) and does not require any a priori assignment
of potential terms as resonant or nonresonant. At each iteration
step every term in the Hamiltonian is adjusted depending on
how close it is to being resonant. Convergence typically requires
2 to 3 iteration steps (at least on the systems studied in this
paper). The method, as implemented in this paper, is nearly as
accurate as the CHM algorithm in obtaining the semiclassical
energies. Its main advantage is that it avoids evaluating
multidimensional integrals or inverting nonlinear angle maps.
Thus, we believe that it is much faster than the CHM method,
making it possible to find IRR tori in higher degrees of freedom
than previously studied.

The paper is organized as follows: In section 2, we give a
brief review of the CGM method for finding the invariant tori
of a nonresonant system. In section 3, we describe the CHM
generalization of the CGM method, which allows one to find
the IRR tori of a Hamiltonian. In section 4, we present the
gradient-descent method and show that it reduces to first-order
perturbation theory in the weakly perturbed limit. In section 5,
we describe the numerical implementation of our method.
Finally, in section 6 we present our numerical results. We first
begin by demonstrating our method using the same two-
dimensional Hamiltonian which Carioli et al. used to demon-
strate the CHM method.1 We then go on to show that our

method can be used to study higher dimensional systems than
previously studied, by looking at four and six dimensional
examples.

2. The CGM Method

The CGM method is an iterative algorithm that finds the
invariant tori of some HamiltonianH(J,θ). It does this by finding
a generating functionS(I ,θ), transforming from the action-angles
(J,θ) to (I ,φ), so thatH(J,θ) ) H̃(I ), where H̃ denotes the
representation ofH in the new action-angle coordinates.

We start with some integrableD-dimensional Hamiltonian
H0(J), to which we add a small perturbationV(J,θ), where we
can expandV in a Fourier series via

wherek ) (k1,...,kD), is a vector of integers.9 We do not include
the zero vector, since this can be absorbed intoH0. Because
our perturbation is small, we writeS(I ,θ) as S(I ,θ) ) I ‚θ +
G(I ,θ), whereG(I ,θ) ) ∑k*0 Gk(I )e2πik‚θ. The new and old
action-angle variables are related to each other via

Therefore,H(J,θ) ) H(I + ∇θG(I ,θ),θ) ) H̃(I ,θ). We can
expandH̃ in a Fourier series inθ, writing

where

where eachθi is integrated from 0 to 1. The goal of the CGM
method is to then choose ourGk(I ) so that

This is done using a Newton-Raphson iteration scheme, at the
end of which we haveH(J,θ) ) H̃0(I ), assuming we obtain
convergence.

The beauty of this method is that the actionsI of the final
torus are fixed at the start of the algorithm by the user. By setting
I ) 2 πp(n + 1/2), we readily obtain the EBK spectrum of the
Hamiltonian.

3. The CHM Method

The CGM method fails when there are resonances in the
Hamiltonian. Because of the formation of resonance zones in
the phase space, the CGM representation of the Hamiltonian is
a local one, and thus cannot handle quantum effects such as
dynamical tunneling. The CHM method, on the other hand,
remains in a global action-angle basis even in the presence of
resonances. It does this by reducing the angular dependence of
the Hamiltonian as much as possible, but not completely, leaving
only those angular terms corresponding to resonances and active
fast terms.

We illustrate the method in the simplest case, that of a single
resonancer . (If ν(J) denotes the zeroth-order frequencies of
the Hamiltonian, then a resonancer at zeroth-order actionJ
means thatν(J)‚r ) 0. A two-dimensional example is ifν1-

V(J,θ) ) ∑
k*0

Vk(J)e2πik‚θ (2)

J ) I + ∇θG(I ,θ) (3)

φ ) θ + ∇IG(I ,θ) (4)

H̃(I ,θ) ) ∑
n

H̃k(I )e
2πin‚θ (5)

H̃n ≡ H̃n[{Gk}](I ) ) ∫ H(I + ∇θG(I ,θ),θ)-2πin‚θdθ (6)

H̃n[{Gk}](I ) ) 0 n * 0 (7)
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(J1,J2) ) 2ν2(J1,J2), thenr ) (1,-2) is a resonance at (J1,J2).)
The trick is to break the Hamiltonian into two pieces. The first
piece consists of all the nonresonant terms, and may be
expressed as

The second piece consists of the resonant terms and may be
expressed as

In the CHM method, we apply a modified CGM method toHnr

as follows: The Fourier components ofH in the new action-
angle variables are given by

We use the Newton-Raphson method to solveH̃n[{Gk}](I ) )
0, n * pr , p * 0. At each step of the iteration, the mapφ(n) )
θ + ∇IG(n)(I ,θ) is inverted using a procedure developed by
Warnock and Ruth.3 The program is stopped when the non-
resonant Fourier components are smaller than some specified
error. The resultant Hamiltonian may then be written as

We then use the resulting tori as a semiclassical basis with which
to construct our matrix representation of the Hamiltonian. If
we let |n〉 denote a basis state corresponding to the torus with
actions In ) 2πp(n + 1/2), then the semiclassical coupling
〈m|Ĥ|n〉 is given by

whereHm-n denotes them-n Fourier component ofH.6 This
expression neglects contributions from the classically forbidden
region; however, if we are working in a regime in which a
semiclassical analysis gives accurate results, then we expect such
contributions to be small (because the EBK wave functions
decay rapidly outside the classically allowed region).

In the more general case of multiple resonances, these terms
must be included intoHr in order to achieve convergence. It
may also be necessary to include near-resonances or even fast
terms (in the case of chaotic dynamics).

4. The Gradient-Descent Approach

4.1. Problems with the CHM Method.There are two main
drawbacks to the CHM method: First, the trick of removing
resonant terms from the Hamiltonian runs into trouble in the
case of near-resonances. For a stronger perturbation, near-
resonances and sometimes even fast terms need to be removed
in order for the Newton-Raphson method to converge. How-
ever, these excluded terms should still be reduced as much as
possible, though not necessarily completely. Because the CHM
method fails to do this, it is not clear that it will always give
the optimal Hamiltonian with a minimized angular dependence.
Only in cases where there are few exact or near-resonances,
with the other terms highly nonresonant, will the minimized
angular dependence be obtained.

The second disadvantage to the CHM method is that at each
iteration step it is necessary to invert the angle map and then to
evaluate a multidimensional integral in order to obtain the
updated Fourier components of the Hamiltonian. This feature
slows the CHM method down, making it difficult to apply to
systems with more than two or three degrees of freedom.

The way around all these drawbacks is to continuously deform
the original action-angle system via a series of infinitesimal
generating functions. Each Fourier component of the Hamilto-
nian is continuously evolved from some initial value to some
final value. The more nonresonant a term, the closer it is brought
to zero (where a “resonance” can also mean a fast term that
has become active due to the size of the perturbation).
Furthermore, by avoiding the need to invert nonlinear functions
and to evaluate multidimensional integrals, we can get to the
IRR basis much faster than with the CHM method, making it
possible to study systems having higher degrees of freedom (up
to D ) 6 in this paper, and possibly higher).

4.2. The Evolution Equation.To derive the PDE governing
the evolution of the Fourier components of H, we assume that
at some timet in our evolution we have arrived at some action-
angle system (I t,φt). To propagate to timet + dt, we use a
generating functionI t+dt‚φt + dtG(I t+dt,φt). For ease of notation
we shall setJ ) I t, I ) I t+dt, θ ) φt, φ ) φt+dt. Since dt is
infinitesimally small, we need only worry about first-order terms.
Thus,

Therefore,

and so, we obtain,

and so, our system of nonlinear PDEs is given by

This is the basic evolution which we are seeking. Note that the

Hnr(J,θ) ) ∑
n*pr ,p*0

Hn(J)e2πin‚θ (8)

Hr(J,θ) ) ∑
p*0

Hpr(J)e2πipr ‚θ (9)

H̃n(I ) ≡ H̃n[{Gk}](I ) ) ∫ H(I + ∇θG(I ,θ),θ(I ,φ))e-2πin‚φdφ
(10)

H̃(I ,φ) ) ∑
p

H̃pr e2πipr ‚φ (11)

Ĥmn ) Hm-n(Im + I n

2 ) (12)

J ) I + dt∇φG(I ,φ) (13)

θ ) φ - dt∇IG(I ,φ) (14)

H(t+dt)(I ,φ) ) H(t)(J,θ)

) H(t)(I + dt∇φG(I ,φ), φ - dt∇IG(I ,φ))

) H(t)(I ,φ) + dt(∇IH
(t)‚∇φG(I ,φ) -

∇φH
(t)‚∆IG(I ,φ)) (15)

∂H(I ,φ)
∂t

) ∇IH(I ,φ)‚∇φG(I ,φ) - ∇φH(I ,φ)‚∇IG(I ,φ)

) 2πi(∑
l

∇IHl(I )e
2πil‚φ‚∑

k*0

kGk(I )e
2πik‚φ -

∑
l

l∇φHl(I )e
2πil‚φ‚∑

k*0

∇IGk(I )e
2πik‚φ)

) 2πi∑
l
∑
k*0

[(k‚∇IHl(I ))Gk(I ) -

(l‚∇IGk(I ))Hl(I )]e
2πi(1+k)‚φ

) 2πi∑
n

∑
k*0

[(k‚∇IHn-k(I ))Gk(I ) -

((n - k)‚∇IGk(I ))Hn-k(I )]e
2πin‚φ (16)

∂Hn

∂t
) 2πi∑

k*0

[(k‚∇IHn-k)Gk - ((n - k)‚∇IGk)Hn-k) (17)
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dynamics occurs at constantI , and so, as with the CGM and
CHM methods,I is a fixed parameter set at the beginning of
the program, making this method suitable for EBK quantization.
Before discussing how we choose our{Gk}, we will first impose
some constraints on the infinitesimal generating functions.

The first constraint that we impose comes from the fact that
our Hamiltonian must remain real during the evolution. There-
fore, we must haveH ) Hh . But H ) ∑nHne2πin‚φ ) ∑nH-ne-2πin‚φ,
and soHh ) ∑nHh ne-2πin‚φ, from which we deduce thatHh n )
H-n. To maintain this property, we must have∂Hh n/∂t ) ∂Hh -n/
∂t. Now,

We also have

and so we see that to have equality between the two expressions
we must takeGh k ) G-k, i.e., our generating functions must also
be real.

The next constraint that we impose comes from the fact that
we shall assume time-reversal invariance in this paper. Our torus
quantization program will be used for problems related to the
vibrational dynamics of polyatomic molecules. No magnetic
field is present, and so time-reversal invariance holds for the
Hamiltonians of these systems. Thus, our Fourier components
Hn may be taken to be real, and we would like this property to
hold throughout the evolution. Therefore, we want∂Hn/∂t )
∂Hh n/∂t ) ∂H-n/∂t. Using the fact thatH-n ) Hh n ) Hn gives us
that

and so we must haveGk ) -G-k. Combined with the fact that
Gh k ) G-k, we obtainGh k ) -Gk ) G-k. Thus,Gk must be purely
imaginary, and so we can writeGk ) iĜk, whereĜk is real.
Since-Gk ) G-k, we must haveĜ-k ) -Ĝk. Putting everything
together, our system of PDEs becomes

where theĜk are real andĜ-k ) -Ĝk. For simplicity of notation,
we shall henceforth drop the hats from theGk terms.

4.3. Choosing theGk. We wish to choose ourGk in such a
way as to decrease|Hn|, or equivalently,HnHh n ) Hn

2. In the
limit of a weak perturbation, allHm, m * 0 are small compared
to H0, and so∂Hn/∂t ≈ -2π(n‚∇IH0)Gn. Therefore,∂Hn

2/∂t ≈
-4πHn(n‚∇IH0)Gn, hence in the weakly perturbed limit the

gradient descent prescription for minimizingHn
2 is to takeGk

) 4π(k‚∇IH0)Hk. Note thatGk is real and satisfiesG-k ) -Gk.
For stronger perturbations, this choice for theGk does not

coincide with the gradient descent values. However, one would
expect that for perturbations that are not too strong (which is a
reasonable assumption, since we want to remain in the quasi-
integrable regime of phase space), the above choice ofGk should
decrease theHn

2. At the beginning of the evolution there will
be a discrepancy between our choice forGk and the actual
gradient-descent values. If ourGk start decreasing theHn

2 from
the beginning, then our perturbative terms should gradually get
smaller, so that our choice for theGk should get better and better
as the evolution proceeds. In summary, then, we take

Notice that this choice forGk eliminates the need to determine
what terms in the Hamiltonian are to be considered resonances
or not. The closer an integer vectork corresponds to a resonance,
the smaller the correspondingGk, and so the less that term in
the Hamiltonian is affected by the evolution. Thus, this evolution
scheme evolves the Fourier components of the Hamiltonian in
such a way that the nonresonant behavior is incorporated into
an integrable Hamiltonian, leaving only the resonant terms to
couple the resulting IRR basis.

It should also be noted that this choice forGk leads to first-
order perturbation theory in the limit of small perturbations.
This is shown in Appendix B.

5. Numerical Implementation of the PDE

5.1. Overall Structure of the Algorithm. We begin by
choosing our basis of quantum number vectors{|n〉}. With this
basis we generate our Hamiltonian matrix via the semiclassical
prescription〈m|Hh |n〉 ) Hm-n(Im+I n/2), as described in eq 12.
We thus construct a listI r of the actionsIm+I n/2 involved in
our semiclassical matrix. It is on this discrete set of actions that
we will apply our gradient-descent algorithm. At the end of the
program, theHn(I r) will have been changed to their final values.
For eachI r we also store all the associateds ≡ m - n. The
final values ofHs(I r) are then placed into their appropriate
positions in the semiclassical matrix, thereby giving us our final
Hamiltonian matrix, which we then diagonalize to determine
the semiclassical spectrum.

5.2. Dynamics at a Given Action.We now turn to the
dynamics at a given action vector, which we denote byI0. Note
thatGk ) 4π(k‚∇IH0)Hk w ∇IGk ) 4π(k‚∇IH0)∇IHk + 4π(k‚
D∇IH0)Hk. Now, the systems we study are harmonic-oscillator
Hamiltonians which are perturbed by some anharmonic terms
(as mentioned before, the target systems of this algorithm are
model vibrational Hamiltonians of polyatomic molecules). For
a purely harmonic system,D∇IH0 ) 0, such a small perturbation
gives us that (k‚D∇IH0)Hk is at most second-order in the
perturbation strength. Thus, the dominant term in∇IGk is 4π-
(k‚∇IH0)∇IHk. Using this value in our evolution equation
suggests we solve the PDE as follows:

Although this PDE is not the exact one we wish to solve, we
expect that for small perturbations it should be sufficiently
accurate. As we shall see with the model systems studied in

∂Hh n

∂t
) -2πi∑

k*0

[(k‚∇IHh n-k)Gh k - ((n - k)‚∇IGh k)Hh n-k]

) 2πi∑
k*0

[(-k‚∇IHk-n)Gh k - ((k - n)‚∇IGh k)Hh k-n]

) 2πi∑
k*0

[(k‚∇IH-n-k)Gh -k - ((-n - k)‚∇IGh -k)H-n-k]

(18)

∂H-n

∂t
) 2πi∑

k*0

[(k‚∇IH-n-k)Gk - ((-n - k)‚∇IGk)H-n-k]

(19)

∂H-n

∂t
) 2πi∑

k*0

[(k‚∇IHn+k)Gk + ((n + k)‚∇IGk)Hn+k] )

2πi∑
k*0

[(k‚∇IHn-k)(-G-k) - ((n - k)‚∇I(-G-k))Hn-k]

(20)

∂Hn

∂t
) -2π∑

k*0

[(k‚∇IHn-k)Ĝk - ((n - k)‚∇IĜk)Hn-k] (21)

Gk ) 4π(k‚∇IH0)Hk (22)

∂Hn

∂t
) -8π2∑

k*0

[(k‚∇IHn-k)Hk -

((n - k)‚∇IHk)Hn-k](k‚∇IH0) (23)
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this paper, this approximate PDE is sufficiently accurate to give
us the semiclassical spectrum.

We solve this system of PDEs on a grid of actions about the
central actionI0 where our grid consists of all actionsI k ) I0

+ DXk, with k ) (k1,...,kD) satisfying|k1| + ... + |kD| e GDSZ.
Let us denote this set of grid points asΩ(I0, GDSZ). GDSZ
and DX are user-input parameters. A sample grid withD ) 2
and GDSZ) 2 is presented in Figure 1.

At the beginning of evolution, we first compute all of theHk

on all the grid points about the actionI0. We cannot compute
Hk for all vectorsk, so we make a user-input cutoff MAXK.
Thus, we only track thosek for which |k1| + ... + |kD| e
MAXK. All other Hk are set to 0 throughout the evolution.
Furthermore, to eliminate tracking negligible fast terms we
introduce a resonance half-width, RHW, and further restrict
ourselves to thosek for which |k‚ω| < RHW, whereω is the
vector of the zeroth-order harmonic frequencies.

The initial Hk are computed analytically. We start with an
initial, zeroth-order action-angle basis of harmonic oscillators.
Our Hamiltonian is

We take all our masses to be 1, because in a polyatomic
molecule, a normal-mode analysis involves a transformation to
a system of mass-scaled coordinates in which all of the masses
become 1. The transformation to harmonic-oscillator action-
angle coordinates is then accomplished via

Once theHk have been determined, we compute all gradients
using centered differences, giving us anO(DX2) accurate
estimate. We then propagate forward by one time step of length
DT, which is also user-specified. (This propagation step is
described in Appendix A.1.) Note that we cannot evaluate∇IHk

at the boundary of our grid. Thus, we cannot change the values
at the boundary points. However, all grid points inΩ(I0, GDSZ
- 1) have been propagated correctly, and so after the first
iteration step we continue propagation only at those grid points.

Note that after the second iteration we continue propagating
only onΩ(I0,GDSZ- 2). Continuing this process, we get that
after theith iteration we continue propagating only onΩ(I0,-
GDSZ- i), and so the total number of iterations cannot exceed
GDSZ. This scheme avoids the need for imposing artificial
boundary conditions on our system. Rather, around eachI0 we
have a collapsing boundary, inside of which theHk’s are
propagated correctly at each time step (see Figure 2). Further-
more, because we care only about the values of theHk at I0,
we may as well set the number of iterations and GDSZ to be
equal. For a desired number of iterations, this gives the minimum
value of GDSZ possible, which increases the algorithm’s speed
and minimizes memory requirements.

6. Numerical Examples

6.1. Two Degrees of Freedom.We first demonstrate our
method using the Pullen-Edmonds Hamiltonian5

where we setωx ) ωy ) 1 andε ) 0.05. This is the system
studied by Carioli et al.1 in illustrating the CHM method, which
is why we shall also use it to illustrate our method, so that there
is a frame of reference for comparison.

In Figure 3 we give a contour plot of this Hamiltonian at
energiesE ) 5, 10, ... 50. This system has four symmetry axes,

Figure 1. Diagram of an action grid withD ) 2 and GDSZ) 2.

H(x,p) )
p2

2
+

1

2
(ω1

2 x1
2 + ... + ωD

2 xD
2) +

∑
N)3

M

∑
n1+...+nD)N

1

n1!...nD!
R(n1,...,nD)x1

n1...xD
nD (24)

xk ) x Ik

πωk
cos 2πθk (25)

pk ) - xωkIk

π
sin 2πθk (26)

Figure 2. Collapsing boundary upon successive iterations of our PDE.

Figure 3. Contour plot of the Pullen-Edmonds potential 1/2 (x2 +
y2) + 0.05x2y2 for E ) 5, 10, ..., 50.

H )
px

2 + py
2

2
+ 1

2
(ωx

2x2 + ωy
2y2) + εx2y2 (27)
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giving rise to four modes of oscillation: Two “local” modes,
corresponding to oscillation along thex and y axes, and two
“normal” modes, corresponding to oscillation along the linesy
) (x. There is strong dynamical tunneling between the “local”
modes in the quasi-integrable regime that leads to a quantum-
mechanical breaking of the degeneracy in the spectrum.

Following Carioli et al. we looked at those quantum states
(n1,n2) satisfyingn1 + n2 ) 8. This gives us 9-fold degenerate
states with zeroth-order energyE ) 9. The system is in the
quasi-integrable regime at this energy. If we count up from the
ground-state (0, 0), then we find that these nine states are states
37 to 45 of our system.

Upon introducing the anharmonic coupling term to our
system, the degeneracy of these states is broken, giving the
quantum-mechanical energies listed in the second column of
Table 1. These energies were obtained by diagonalizing all states
from the ground state up to a total of sixteen quanta. Using the
semiclassical coupling prescription given in eq 12, we also found
the corresponding semiclassical energies using the harmonic-
oscillator tori as our basis. As with the quantum energies, these
energies were also determined by diagonalizing all states up to
a total of sixteen quanta. The energies obtained were the same
energies obtained by Carioli et al. using the IRR approach. These
energies are in the third column of Table 1.

We next diagonalized only the 9× 9 block of our 9-fold
degenerate states using the harmonic-oscillator tori as our
semiclassical basis. The results are listed in the fourth column
of Table 1. Note the significant discrepancy between these
energies and the exact semiclassical energies. (By exact
semiclassical energies we mean the energies obtained using the
same harmonic basis used to obtain the quantum energies, but
using the semiclassical couplings instead of the quantum
couplings.) We applied our GDA method to these nine degener-
ate states, usingDT ) 0.0007,DX ) 0.1, MAXK ) 8, RHW
) 8.1, and iterating twice. The results are listed in the fifth
column of Table 1. Note that the discrepancy with the exact
semiclassical energies has been drastically reduced, by at least
90% in all cases, and by over 99% in most. Thus, while our
method is not quite as accurate as the CHM method, it is nearly
so. Furthermore, the disrepancy between the two methods is
well within the discrepancy between the exact semiclassical and
exact quantum energies.

Carioli et al. also performed a sweep ofωx from 0.99 to 1.01
to look at the avoided crossing between states 39 and 40. In
Figure 4(a) we show the semiclassical energy curves for the
two states, along with the curves obtained by diagonalizing the
9 × 9 block using the harmonic-oscillator tori as our basis. In
Figure 4b we also show the semiclassical energy curves for the
two states, along with the curves obtained by applying our

gradient descent method to our zeroth-order 9-fold degenerate
basis (with the same program parameters as before). Note that
the discrepancy present in Figure 4a has been eliminated. To
be sure, the match is not exact, but the differences cannot be
seen at the resolution level of the plot.

6.2. Four Degrees of Freedom.To demonstrate the speed
of our method, we used it to determine the EBK spectrum of
the four-dimensional Hamiltonian,

We looked at those quantum states (n1, n2, n3, n4) satisfyingn1

+ n2 + n3 + n4 ) 8. This gave us 165-fold degenerate states
with a zeroth-order energy ofE ) 10. Counting up from the
ground-state gives us that these are states 331 to 495 of our
system.

The quantum and exact semiclassical energies of these states
were obtained by diagonalizing all states up to a total of sixteen
quanta. The results are listed in the second and third columns,
respectively, of Table 2. Note that we do not list all 165 energies,
but rather only a representative sample. As with the two-
dimensional case, we also diagonalized the 165× 165 block
of our degenerate states, using the zeroth-order harmonic
oscillator tori as our semiclassical basis. This gives us the
energies in the fourth column of Table 2. Finally, we applied
our algorithm to this basis using the parametersDT ) 0.0007,
DX ) 0.1, MAXK ) 8, RHW ) 4.1, and iterating twice. The
results are listed in the fifth column of Table 2.

The average initial discrepancy between our IRR energies,
given in the fourth column, and the exact semiclassical energies
was 3.0%. The final discrepancy was 0.2%. Thus, our algorithm,
in two iterations, reduced the initial error in the energies by an
average of 93.3% and by at least 80% for all our energies. There
are four “anomalous” energies near the top of the band with
significantly greater error than the other energies, but even for
these energies the final error is around 1%. At this point it should
be noted that our perturbation might be a little large for our
PDE (which neglected theD∇IH0 term), because the initial
energy gap that needed to be closed was on average several
times larger than the initial energy gap in our two-dimensional
example.

6.3. Six Degrees of Freedom.We conclude this section by
looking at a six-degree-of-freedom example. As with the four-
dimensional example, the Hamiltonian we chose was a gener-
alization of the Pullen-Edmonds system. We took

We initially tried to obtain the exact quantum and semiclassical
energies of the states with a total of 8 quanta in the unperturbed
limit. While applying our method to this basis would not have
been a problem, we would not have been able to generate the
exact quantum and semiclassical energies required for com-
parison. As with the two- and four-dimensional cases, we would

TABLE 1: Two-Degree-of-Freedom Examplea

state QM SC 0 iterations 2 iterations

37 9.1548 9.1482 9.1731 9.1506
38 9.1577 9.1514 9.1812 9.1538
39 9.3806 9.3747 9.4199 9.3747
40 9.4265 9.4219 9.5045 9.4224
41 9.5166 9.5150 9.5904 9.5133
42 9.6859 9.6876 9.8438 9.6861
43 9.6987 9.6988 9.8519 9.6983
44 10.0129 10.0163 10.2736 10.0163
45 10.0133 10.0169 10.2740 10.0167

a Energies of states 37 to 45 obtained by various methods. Column
2: Exact quantum-mechanical. Column 3: Exact semiclassical. Column
4: 9 × 9 block diagonalization in the harmonic oscillator torus basis.
Column 5: 9× 9 block diagonalization in the IRR basis.
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have had to diagonalize all states up to a total of sixteen quanta
to get the higher-order accuracy desired. The resulting basis
was simply too large for our computer to handle, and so we
had to retreat to a more manageable example. We thus looked
at those quantum states (n1, n2, n3, n4, n5, n6) satisfyingn1 + n2

+ n3 + n4 + n5 + n6 ) 4, giving us 126 degenerate states with
a zeroth-order energy ofE ) 7. Counting from the ground-

state as before, we get that these are states 85 to 210 of our
system.

The quantum and exact semiclassical energies were then
obtained by diagonalizing all states up to a total of eight quanta.
The results are listed in the second and third columns,
respectively, of Table 3. We do not list all 126 energies, but
rather only a representative sample. Proceeding as before, we
then diagonalized only the 126× 126 block of degenerate states,
using the zeroth-order harmonic oscillator tori as our basis. The
results are given in the fourth column of Table 3. Finally, we
applied our gradient-descent algorithm to this degenerate basis.
Using MAXK ) 8 gave us so many resonances and fast terms
that the run-time was prohibitively slow. So, we sacrificed
accuracy for speed and used the parametersDT ) 0.0007,DX
) 0.1, MAXK ) 4, RHW) 4.1, and iterated twice. The results
are given in the fifth column of Table 3. Notice that although
we significantly reduced the number of available resonances
and fast terms, we still managed to cut the initial energy
discrepancy from an average of 2.3% to an average of 0.4%.
This corresponds to an average reduction in the initial error by
83.3%, with a minimum reduction of 78.7% and a maximum
reduction of 90.4%.

6.4. Discussion.Notice that in all our examples, just using
the degenerate basis of harmonic-oscillator tori did not give us
a good estimate of the semiclassical energies. It was necessary
to diagonalize all states within a much wider energy band to
do so. Although harmonic oscillators are probably the easiest
basis states to use for the potentials of interest to us in this
paper, it is generally a mistake to attach a mechanism to the
energy flow associated with this basis. Stuchebrukhov and
Marcus,7 using a harmonic-oscillator basis to study 0.01-0.1
cm-1 energy splittings in a polyatomic molecule with 42
vibrational degrees of freedom, had to diagonalize all states
within an energy band of 10 cm-1 or more. They invoked the
concept of a “superexchange” mechanism, whereby energy flow
between nearly degenerate states, but distantly separated in the
quantum number space, occurred via energy flow between states
closer to each other in the quantum number space but with a
larger energy gap between them. This “superexchange” mech-
anism is a basis-dependent notion, however, as is most simply
illustrated by our two-degree-of-freedom example. To obtain
the semiclassical energies of states 37 to 45, with a total energy
range<1, we had to diagonalize a much larger basis of 153
states with a total energy range of>20. We could also invoke
a “superexchange” mechanism for this energy flow. Indeed,

Figure 4. (a) Semiclassical avoided crossing between states 39 and 40 as a function ofωx. The curves here are the exact semiclassical energies
and the energies obtained by diagonalizing the 9× 9 block in the harmonic oscillator torus basis. (b) Semiclassical avoided crossing between states
39 and 40 as a function ofωx. The curves here are the exact semiclassical energies and the energies obtained by diagonalizing the 9× 9 block in
the IRR torus basis. The IRR basis was generated using the gradient-descent algorithm.

TABLE 2: Four-Degree-of-Freedom Examplea

state QM SC 0 iterations 2 iterations

331 10.4846 10.4658 10.5753 10.4821
332 10.4877 10.4688 10.5812 10.4853
333 10.4902 10.4712 10.5846 10.4877
334 10.4972 10.4777 10.5936 10.4942
335 10.7116 10.6961 10.8517 10.7137
336 10.7147 10.6992 10.8557 10.7167
337 10.7179 10.7023 10.8598 10.7198
338 10.7238 10.7081 10.8675 10.7256
339 10.7271 10.7114 10.8717 10.7288
340 10.7304 10.7146 10.8759 10.7320
341 10.7426 10.7268 10.9048 10.7455
342 10.7460 10.7302 10.9095 10.7488
343 10.7493 10.7334 10.9142 10.7520
344 10.7564 10.7403 10.9238 10.7587
345 10.7596 10.7435 10.9283 10.7618
346 10.7628 10.7466 10.9329 10.7648
347 10.8320 10.8198 10.9943 10.8375
348 10.8355 10.8231 10.9980 10.8407
349 10.8530 10.8418 11.0288 10.8591
350 10.8564 10.8450 11.0323 10.8623
480 11.5308 11.5132 12.0430 11.5416
481 11.5323 11.5156 12.0476 11.5444
482 11.5339 11.5230 12.0525 11.5471
483 11.5350 11.5314 12.0580 11.5503
484 11.5369 11.5321 12.0623 11.5527
485 11.5376 11.5345 12.0633 11.5527
486 11.5401 11.5375 12.0660 11.5548
487 11.5402 11.5409 12.0718 11.5576
488 11.5427 11.5435 12.2613 11.6688
489 11.5450 11.5449 12.2805 11.6791
490 11.5455 11.5458 12.2819 11.6798
491 11.5456 11.5503 12.2834 11.6806
492 11.6628 11.6669 12.2850 11.6815
493 11.6692 11.6793 12.2865 11.6823
494 11.6699 11.6801 12.2878 11.6830
495 11.6707 11.6810 12.3028 11.6911

a A sample of energies of states 331 to 495 obtained by various
methods. Column 2: Exact quantum-mechanical. Column 3: Exact
semiclassical. Column 4: 165× 165 block diagonalization in the
harmonic oscillator torus basis. Column 5: 165× 165 block diago-
nalization in the IRR basis.
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shrinking our basis did give a small change in the energies
(though only in the last one or two decimal places), so that one
could argue that our perturbation is sufficiently strong to allow
for such a mechanism. However, as is clear by applying our
GDA method, a more accurate explanation is that while a
superexchange mechanism is required to account for energy flow
in the harmonic basis, there exists a basis obtainable from the
underlying classical dynamics of the system, namely the IRR
tori, in which the superexchange mechanism need not be
invoked. Using the IRR tori we were able to obtain our nine
semiclassical energies using a much smaller basis, which also
lies within the energy range of our semiclassical spectrum. The
“superexchange” mechanism is thus an artifact, coming from
the fact that our zeroth-order basis of harmonic-oscillators is
not the optimal basis of IRR tori.

Carioli et al. made one additional plot in their paper, in which
they applied their CHM method in the chaotic regime, withE
) 50. To obtain convergence of their method, they had to also
include the fast terms arising from the vectors ) (1,1). The
IRR representation of the Hamiltonian was no longer block
diagonal, though the coupling structure was still simplified
somewhat. For this reason, we decided to forego our own study
at E ) 50. At best, our algorithm would simplify the coupling
structure as well, so that a smaller basis would be required to
obtain the semiclassical spectrum. In the chaotic regime,

however, semiclassical quantization no longer occurs only on
the invariant tori (due to ergodic regions of phase space of area
significantly larger than (2πp)D), so that the IRR basis is no
longer optimal. Another way of looking at this is that because
our matrix is no longer block diagonal (though with a simplified
coupling structure), we have to invoke the “superexchange”
mechanism in order to account for the observed energies. At
this point, we may as well use harmonic oscillators.

In the end, the use of invariant tori as a semiclassical basis
for quantum calculations is most useful at relatively low energy,
where the dynamics is quasi-integrable. It is in this regime that
the IRR basis is expected to be most physically motivatived,
and consequently leads to a significantly smaller basis, as well
as giving physical insight.

7. Conclusions and Future Research

In this paper we presented an alternative approach to the CHM
method for finding the IRR basis of a Hamiltonian system. Our
approach is essentially a gradient-descent approach that continu-
ously deforms our initial action-angle basis (taken to be
harmonic oscillators) into an optimal basis of tori in which the
angular dependence of the Hamiltonian is minimized. The
advantage of the gradient-descent approach is that formally it
does not distinguish between resonances and fast terms, so that
all potential terms are evolved in a uniform fashion and reduced
as much as possible. The CHM method, on the other hand,
requires an a priori decision as to which terms are to be treated
as resonances and which are going to be incorporated into
creating the final tori. In the case of near-resonances this
distinction is blurred and depends on the strength of the
perturbation. In the chaotic regime, even fast terms may need
to be treated as resonances. Although no speed comparisons
were made, we believe that our method is also faster, since we
do not have to evaluate any integrals or invert the angle map.
Thus, our method can be used to study higher dimensional
systems (up toD ) 6 and maybe even higher).

Like the CHM method, our method, as currently implemented,
assumes a small perturbation on a zeroth-order integrable
Hamiltonian. Convergence is fast, requiring only two iterations
in the examples studied in this paper. One approach to allow
for stronger perturbations is to include the (k‚D∇IH0)Hk term
arising from our choice ofGk. The problem with this is that
using our collapsing boundary method we would have to
decrease GDSZ by 2 at each iteration step. If we wish to apply
our method to higher-dimensional systems, this would greatly
increase computation time, because two iterations would require
a GDSZ of 4 as opposed to the current requirement of 2. As
mentioned before, the systems of interest to us are Hamiltonians
modeling the vibrational energy flow within polyatomic mol-
ecules. Because we wish to remain in the quasi-integrable
regime, our Hamiltonians are taken to be harmonic plus some
small anharmonic perturbation. Thus, including the term involv-
ing D∇IH0 simply adds run time without any significant gains
in accuracy for the types of systems of interest to us.

For more general Hamiltonians, a PDE approach may still
be desirable, and yet our choice forGk and our approximate
PDE given in eq 23 may not be sufficient to obtain the IRR
basis. Even if our current choice for theGk is sufficient, we
may find that a different choice leads to a more stable and
accurate implementation of our PDE. In any case, one would
have to retreat to eq 21 or even eq 17 (in the case where time-
reversal invariance no longer holds) and formulate a different
scheme for choosing theGk. At this point it should be noted
that the PDE approach may be the simplest and fastest overall

TABLE 3: Six-Degree-of-Freedom Examplea

state QM SC 0 iterations 2 iterations

85 7.5094 7.4947 7.6006 7.5181
86 7.5245 7.5108 7.6220 7.5347
87 7.5272 7.5133 7.6254 7.5374
88 7.5307 7.5167 7.6299 7.5408
89 7.5363 7.5220 7.6371 7.5464
90 7.5454 7.5305 7.6485 7.5552
91 7.6178 7.6063 7.7413 7.6328
92 7.6199 7.6083 7.7440 7.6349
93 7.6220 7.6104 7.7468 7.6370
94 7.6232 7.6116 7.7484 7.6383
95 7.6253 7.6137 7.7512 7.6404
96 7.6274 7.6157 7.7539 7.6425
97 7.6286 7.6169 7.7554 7.6436
98 7.6307 7.6189 7.7582 7.6458
99 7.6328 7.6210 7.7610 7.6479

100 7.6356 7.6237 7.7648 7.6507
190 7.8028 7.7952 7.9992 7.8256
191 7.8045 7.7959 8.0010 7.8265
192 7.8052 7.7976 8.0020 7.8272
193 7.8069 7.7979 8.0035 7.8289
194 7.8086 7.7993 8.0073 7.8307
195 7.8581 7.8608 8.0973 7.8892
196 7.8598 7.8625 8.0998 7.8908
197 7.8615 7.8642 8.1023 7.8925
198 7.8624 7.8651 8.1036 7.8934
199 7.8640 7.8667 8.1061 7.8950
200 7.8657 7.8684 8.1086 7.8967
201 7.8664 7.8691 8.1096 7.8974
202 7.8680 7.8707 8.1121 7.8990
203 7.8697 7.8724 8.1146 7.9006
204 7.8719 7.8746 8.1179 7.9028
205 7.8722 7.8750 8.1186 7.9032
206 7.8739 7.8766 8.1211 7.9049
207 7.8756 7.8782 8.1235 7.9065
208 7.8778 7.8804 8.1268 7.9087
209 7.8811 7.8837 8.1319 7.9120
210 7.9164 7.9295 8.1999 7.9556

a A sample of energies of states 85 to 210 obtained by various
methods. Column 2: Exact quantum-mechanical. Column 3: Exact
semiclassical. Column 4: 126× 126 block diagonalization in the
harmonic oscillator torus basis. Column 5: 126× 126 block diago-
nalization in the IRR basis.
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method for finding invariant tori, because it does not require
the evaluation of any integrals or the numerical inversion of
nonlinear functions.

Our future goal is to determine the structure of the matrices
in the IRR basis. The greatest advantage of the IRR representa-
tion is that it incorporates much of the classical mechanics into
the invariant tori, thereby making possible the isolation of
residual quantum effects such as dynamical tunneling. An
understanding of the couplings between the IRR tori will reveal
how the tunnel couplings behave. This could in turn be used to
understand phenomena such as localization of the tunneling, or
if the perturbation is sufficiently strong, ergodicity over the
energy hypersurface due to dynamical tunneling.

It has been mentioned in this paper that in the quasi-integrable
regime, the couplings between the IRR tori correspond to
dynamical tunneling in the semiclassical limit. Because the
presence of resonances prevents the elimination of the IRR
couplings Hm-n, it has been argued in ref 4 that it is the
formation of resonance zones in the phase space that facilitates
the tunneling. In a Poincare surface of section, the phase space
surrounding a hyperbolic fixed point in the resonance zone looks
much like the phase space for the one-dimensional above-barrier
reflection problem,4,11,13which is a prime example of dynamical
tunneling.

Classically, however, in 3 or more dimensions, Arnol’d
diffusion can cause energy transport between the tori. A
trajectory can travel along the Arnol’d web in the chaotic
interstices between the tori, and may very well be ergodic over
the energy hypersurface. Thus, in higher dimensions, a numerical
study to determine whether the IRR couplings are primarily due
to tunneling or to Arnol’d diffusion is necessary. The general
consensus is that Arnol’d diffusion is slow and localizes
quantum-mechanically.4,12 A numerical study of this phenom-
enon is still warranted before making the claim with certainty
that the IRR tori are coupled by dynamical tunneling.

Before concluding, it seems appropriate to briefly discuss the
utility of the IRR approach in general, and the PDE implemen-
tation of it in particular, as a numerical method for quantum
calculations. After all, it is usually easier and faster to use a
convenient zeroth-order basis and simply diagonalize a large
basis set. The PDE method is cumbersome by comparison,
requiring more sophisticated mathematical and numerical
machinery.

As the dimensionality of a system increases, the basis set
required for a direct zeroth-order diagonalization could be too
large for the computer to handle. As mentioned in section 6.3,
we already encountered this problem in our numerical tests. The
IRR approach can significantly reduce the size of the basis
required to obtain the desired energies, to a point where this
basis can easily be stored and diagonalized on the computer.
Thus, while it is slower than direct diagonalization, this approach
may be useful as a numerical method in cases where the required
zeroth-order basis set size is simply too large for the computer
to handle. The IRR approach has the additional advantage that
the reduced basis is more physically motivated than the zeroth-
order basis, because the IRR basis is extracted from the
underlying classical dynamics of the system.
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Appendix A. Numerical Details

In this appendix we give some additional numerical details
regarding our implementation of the GDA method. The ad-
ditional information provided here should make the results
presented in this paper completely reproducible.

A.1. Numerically Stable Propagation. In this section we
describe how we numerically integrate our PDE one time step
forward. First of all, it should be noted that because we are
considering all terms of the formk‚∇IH0, we are simultaneously
evolving potential terms corresponding to resonances and fast
terms. Thus, there is a variety of time scales in our system, so
that stiffness becomes a problem. One way around this is to
employ an implicit integration scheme to achieve stability, but
we have a different method that takes advantage of the fact that
our perturbation is small.

The first-order approximation to our evolution equation was
shown to be∂Hn/∂t ) -8π2(n‚∇IH0)2Hn, giving Hn(I ,t+τ) )
Hn(I ,t)e-8π2(n‚∇IH0)2τ. Therefore, for smallτ we may write

so integratingτ from 0 to DT gives

Of course, ifR ≡ (k‚∇IH0)2 + ((n - k)‚∇IH0)2 is too close to
0, then the computer will give a floating exception error if we
try to evaluate 1- e-8π2RDT/R directly. We thus evaluate this
term as follows: We definex ) 8π2RDT, and rewrite our
expression as 8π2DT 1 - e-x/x. We then evaluate 1- e-x/x
via its Taylor expansion, given by∑n)0

∞ (-x)n/(n+1)!.
By expanding the exponential out to first-order, we see that

this approach reduces to the ordinary one-step explicit Euler
method for sufficiently smallDT. However, the above method
is superior to using an explicit Euler method because we can
now take larger time steps that are more appropriate to the slow
terms arising from resonances or near-resonances. These larger
time steps do not lead to numerical instability, since the more
nonresonant terms (corresponding to the shorter time scales
requiring smaller time steps to maintain stability in the explicit
Euler scheme) are attenuated by the exponential factor. In fact,
since we want to kill off the nonresonant terms in any case,
there is an optimum time step which kills off the nonresonant
terms as much as possible without sacrificing accuracy.

It turns out that our propagation scheme is still not as stable
as desired. This is remedied by propagating using the Lax
method.10 Let (ê1,...,êD) denote the standard orthonormal basis
of RD. At someI k on our action grid, letI k

i( denoteI k ( DXêi.
Then in eq A2 we replaceHn(I k,t) with ∑i)1

D Hn(I k
i+,t) + Hn-

(I k
i-,t)/2D. This trick adds a diffusive term to our propagation,

which attenuates high-frequency components and therefore
stabilizes our system ifDT andDX are in an appropriate ratio.
An explicit stability analysis was not performed on this system,
so we do not know what the exact stability criterion is. We

∂Hn(I ,t + τ)

∂τ
) -8π2∑

k*0

[(k‚∇IHn-k(I ,t))Hk(I ,t) - ((n - k)‚

∇IHk(I ,t))Hn-k(I ,t)] × (k‚∇IH0)e
-8π2((k‚∇IH0)2+((n-k)‚∇IH0)2)τ

(A1)

Hn(I ,t + DT) ) Hn(I ,t) -

∑
k*0

(1 - e-8π2((k‚∇IH0)2+ ((n-k)‚∇IH0)2)DT)(k‚∇IH0) ×

(k‚∇IHn-k(I ,t))Hk(I ,t) - ((n - k)‚∇IHk(I ,t))Hn-k(I ,t)

(k‚∇IH0)
2 + ((n - k)‚∇IH0)

2
(A2)
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simply found that employing a Lax method allowed us to choose
a reasonableDT and DX to integrate our PDE numerically
without getting a floating exception error after a few iterations.

It should be noted that in our actual code all of the actions
were measured in units of 2π, meaning we setIi ) p(ni + 1/2),
as opposed to the convention thatIi ) h(ni + 1/2) ) 2πp(ni +
1/2). In creating our torus basis we stored the torus actions via
their quantum numbers. Instead of multiplying by 2π to get a
value consistent with the definition in eq 1, we simply left the
actions in these “quantum number” units. We still implemented
our PDE as written (i.e., with all the coefficients given in this
paper). This implementation essentially amounts to a dilation
of DT by 4π2. Thus, someone who wishes to reproduce the
results presented below with an implementation of eq 23 using
the definition of the actions given by eq 1 should increase all
our DT’s by a factor of 4π2.

A.2. Numerical Issues.The main remaining problem with
our implementation of the gradient-descent method is that it
does not stop once we reach the IRR basis. In our two-
dimensional case, using the parameters given above but iterating
three times instead of two gives us a deviation from the
semiclassical energies, especially at the higher end of the
spectrum, where the method significantly underestimates the
true semiclassical energies. After iterating five or six more times
we get a floating exception, indicating that perhaps there are
some numerical stability issues that have not been completely
resolved and that lead to significant error already in the third
iteration. Thus, the introduction of some kind of stopping term
would be useful. The stopping criterion could be some kind of
error term which, if theGk drop below it, the program is stopped
(such a criterion was employed in the CHM method to stop the
Newton-Raphson iterations, though “overshooting” of the target
was not a problem).

There are several reasons we have not included a stopping
term at this point. First of all, as written, our gradient descent
algorithm gives accurate results after only two iteration steps.
Second, for higher dimensional systems, the number of reso-
nances and fast terms increases rapidly. Because the size of the
action grid also increases rapidly in higher dimensional systems,
we would in any case never iterate more than 2 or 3 times in
order to maintain a reasonable run time. Finally, a system that
requires several iteration steps to give accurate results is typically
more strongly perturbed than a system that requires fewer
iteration steps. Such a more strongly perturbed system is less
likely to be in the quasi-integrable regime of phase space,
making a torus-quantization scheme less physically motivated
in any case. Given these considerations, a stopping term
becomes more of a feature that simply slows the algorithm
down.

An alternative to a stopping term is to always iterate twice,
but allow the computer to choose the optimum step size based
on the initial perturbation. While we have not done this yet, we
may decide to do so in the future.

Despite our reasoning, at some point it may become desirable
to allow for more iterations. A more careful analysis of our
PDE will be required to determine the cause of the inaccuracy
at higher iterations. If it is due to numerical instability, then a
more sophisticated approach than our current one may be
required to better stabilize our evolution. If it is due to errors
introduced by solving the approximate PDE given in eq 23,
then we may have to retreat back to the full PDE without any
terms neglected. We may have to retreat even further and
formulate an altogether different scheme for choosing ourGk

in order to improve the stability and accuracy of our algorithm.

Appendix B. The First-Order Limit

In this appendix, we shall show that our choice forGk leads
to first-order perturbation theory in the limit of small perturba-
tions. To do so, we first need to determine how to string together
the infinitesimal, short-time generating functions to form the
final generating function.

Consider then the following sets of action-angle variables:
(I0,φ0), (I1,φ1), (I2,φ2), at timest, t + dt, t + 2dt, respectively.
These action-angle variables are connected by generating
functionsS1(I1,φ0), S2(I2,φ1) with

Therefore,

Therefore, working to first-order in dt, we have

and,

Thus, the generating function fromt to t + 2dt is justG3(I2,φ0)
) G1(I2,φ0) + G2(I2,φ0). As long as we are working in the
weakly perturbed limit, so that first-order perturbation theory
applies, we obtain that our overall generating functionG(I ,θ)
is given by

whereGt is the infinitesimal generating function fromt to t +
dt.

Now that we know how to string together the short-time
generating functions, we can determine the form for the final
generating function. In the weakly perturbed limit we showed
that ∂Hn/∂t ) -2π(n‚∇IH0)Gn ) -8π2(n‚∇IH0)2Hn. Note that
H0(I ) remains constant for allI , and so the solution to our
differential equation is simply

ThereforeGk(I ,t) ) 4πHk
0(k‚∇IH0)e-8π2(k‚∇IH0)2t, k * 0. Be-

causeGk(I ,t) starts out at 0, then integrating out to∞ gives us
for our final generating function thatGk(I ) ) Hk

0/2π(k‚∇IH0),
which is exactly the result from first-order perturbation theory,
as claimed.

Of course, the above first-order limit derivation is only valid
if the system is nonresonant. Otherwise, our final generating
function blows up, taking us out of the first-order regime, so

S1(I1,φ0) ) I1‚φ0 + dtG1(I1,φ0) (B1)

S2(I2,φ1) ) I2‚φ1 + dtG2(I2,φ1) (B2)

I0 ) I1 + dt∇φ0
G1(I1,φ0) (B3)

φ1 ) φ0 + dt∇I1
G1(I1,φ0) (B4)

I1 ) I2 + dt∇φ1
G2(I2,φ1) (B5)

φ2 ) φ1 + dt∇I2
G2(I2,φ1) (B6)

I0 ) I2 + dt∇φ1
G2(I2,φ1) + dt∇φ0

G1(I1,φ0)

) I2 + dt∇φ0
G2(I2,φ0) + dt∇φ0

G1(I2,φ0) (B7)

φ2 ) φ0 + dt∇I1
G1(I1,φ0) + dt∇I2

G2(I2,φ1)

) φ0 + dt∇I2
G1(I2,φ0) + dt∇I2

G2(I2,φ0) (B8)

G(I ,φ) ) ∫0

T
Gt(I ,θ)dt (B9)

Hn(I ,t) ) Hn
0(I )e-8π2(n‚∇IH0)2t (B10)

2812 J. Phys. Chem. A, Vol. 105, No. 12, 2001 Tannenbaum and Heller



that our method of stringing together our infinitesimal generating
functions is no longer valid. However, first-order perturbation
theory is also only valid if the system is nonresonant, and so
our gradient descent method does indeed reduce to first-order
perturbation theory in the weakly perturbed limit.
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